Медь сера – Сера медь – Справочник химика 21
alexxlab | 29.05.2020 | 0 | Вопросы и ответы
Взаимодействие серы с медью – Справочник химика 21
Коррозионная активность сернистых соединений зависит от их строения. Наиболее агрессивны сероводород, сера и меркаптаны. Сероводород корродирует цинк, железо, медь, латунь и алюминий. Сера, если она имеется в свободном состоянии в топливе, почти мгновенно взаимодействует с медью и ее сплавами, образуя сульфиды, вследствие чего наряду с коррозией металла, приводящей к потере его массы, наблюдается образование отложений на металле. Коррозия металлов меркаптанами определяется их концентрацией в топливе и строением. Ароматические меркаптаны более коррозионно-агрессивны, чем алифатические, при этом бициклические меркаптаны агрессивнее моноциклических. [c.104]Образующиеся в условиях переработки сернистых нефтей при высоких температурах крекинг-процесса сернистые соединения, элементарная сера, меркаптаны и др. являются весьма коррозионно-активными веществами. Основным агентом высокотемпературной коррозии является сероводород. Сернистый газ при высоких температурах менее опасен, чем сероводород. Сухой сероводород при комнатной температуре также ие представляет опасности д, я обычных углеродистых сталей даже в присутствии кислорода, по ои способен взаимодействовать с медью согласно следующей реакции
К химической коррозии также относится коррозия в среде неэлектролитов. Органические жидкости, не обладающие электропроводимостью, исключают возможность протекания электрохимических реакций. К таким жидкостям относятся органические растворители (бензол, толуол, тетрахлорид углерода), жидкое топливо (мазут, бензин, керосин) и некоторые неорганические вещества (бром, расплав серы, жидкий фто-роводород). В этих средах коррозию вызывает реакция между металлом и коррозионной средой. Наибольшее практическое значение имеет коррозия металлов в нефти и нефтепродуктах. Коррозионноактивными составляющими нефти являются сера, сероводород, сероуглерод, тиофены, тиолы и т. п. Сероводород образует сульфиды с железом, свинцом, медью и их сплавами. При взаимодействии меркаптанов с никелем, серебром, медью и свинцом получаются производные тиолов — тиолаты. Сера взаимодействует с медью и серебром с образованием сульфидов. Повышение температуры ускоряет коррозию металлов в нефти наличие воды в нефти резко ускоряет процесс, вызывая электрохимическую коррозию. [c.52]
Для определения цвета образовавшегося осадка необходимо маскировать иод. В пробирку с осадком добавьте раствор сульфита (тиосульфата) натрия или пропустите через него ток оксида серы (IV). Через стеклянный фильтр отфильтруйте белый осадок, промойте его водой, насыщенной сернистым газом и спиртом. Изучите взаимодействие иодида меди (I) с воздухом. Что происходит при его нагревании Осадок иодида меди (I) сохраните в закрытой пробирке для последующих опытов. [c.272]
Опыт 206. Взаимодействие серы с медью [c.114]
Концентрированная серная кислота взаимодействует почти со всеми металлами независимо от их положения в ряду стандартных электродных потенциалов, но водород при этом не выделяется. Продукт, до которого восстанавливается кислота, зависит от восстановительной активности металла. Например, концентрированная серная кислота, взаимодействуя с медью, восстанавливается до оксида серы (IV), с цинком — до свободной серы и с кальцием — до сероводорода. Степень окисления серы может изменяться от -)-6 до —2, например [c.260]
После 12 часов окисления состав гетероорганической части осадка несколько изменяется. Максимум поглощения в области 1000—1200 м- смещается к 1070 сж , проявляется интенсивное поглощение при 1300, 1170, 990, 930, 800 сж , соответствующее новым структурам, которые могут быть ионизированными остатками сульфоновых кислот (1200—1170 и 1030 и 1060 см ). Остается возможным перекрытие поглощения связей сера — кислород поглощением С—0-связей, но отнесение поглощения к связям серы имеет в этом случае несколько большие основания, поскольку интенсивность поглощения 1000—1100 сж непропорционально велика по сравнению с интенсивностью поглощения С=0-групп. По-видимому, продукты окисления н.гексадекана (карбоно-ные кислоты) и сернистых соединений (сульфокислоты) активно взаимодействуют с медью, образуя медные соли карбоновых и сульфоновых кислот. Эти соединения и составляют основную массу осадка. [c.144]
В атмосфере водорода и сероводорода при 600—1000 “С радиоактивная сера 8 взаимодействовала с медью двояко происходила хемосорбция серы на поверхности металла и наблюдалось растворение серы в решетке меди. При 830 X и общем давлении газовой смеси 100 мм рт. ст. в результате хемосорбции один атом серы приходился на два атома меди [39]. [c.47]
Влажный хлор взаимодействует с медью при обычной температуре, образуя СиСЬ, хорошо растворимую в воде. Медь легко соединяется с другими галогенами. Особое сродство проявляет медь к сере и селену. С водородом, азотом и углеродом медь не реагирует даже при высоких температурах.
Сравнивая взаимодействие серы с разными металлами, русский исследователь А. Орловский в 1881 г. нашел, что легче всех других металлов, исключая щелочные металлы, с серой соединяется медь, затем р.туть, серебро и свинец и лишь после свинца — железо. При помощи чистой медной пластинки легко открыть свободную (растворенную) серу в органических жидкостях пластинка при погружении в эту жидкость, чернеет, покрываясь сернистой медью. Если же в раствор серы в сероуглероде бросить так называемую молекулярную медь , т. е. медный порошок, полученный путем восстановления меди и раствора медного купороса цинком, соединение меди с серой происходит так бурно, что-от выделяющегося при этом тепла сероуглерод закипает. [c.271]
Сравнивая взаимодействие серы с разными металлами, русский исследователь А. Орловский в 1881 г. нашел, что легче всех других металлов, исключая щелочные металлы, с серой соединяется медь, затем ртуть, серебро- и свинец и лишь после свинца- железо. При помощи чистой медной пластинки легко открыть свободную (растворенную) серу в органических жидкостях пластинка при погружении в эту жидкость чернеет, покрываясь сернистой медью. Если же в раствор серы в сероуглероде бросить так называемую моле- [c.371]
Используя приведенные стандартные энтальпии образования ряда гидридов, оценить, с какими из перечисленных веществ, углеродом, кремнием, азотом, фосфором, серой, медью, мышьяком, водород не может непосредственно взаимодействовать [c.102]
Концентрированная серная кислота тоже является сильным окислителем, особенно при нагревании. Но окисляющее действие в ней оказывает не ион Н (как во всех разбавленных кислотах), а шестивалентная сера кислотного остатка, которая при взаимодействии с металлами восстанавливается до 502(5+ ), свободной серы 5 и даже до Н25(5 ). Так, при взаимодействии с медью, которая с разбавленной серной кислотой не реагирует, концентрированная серная кислота растворяет медь, а сама при этом восстанавливается до 502 по следующему уравнению
Химическая активность меди и ее аналогов невелика и убывает с возрастанием порядкового номера элемента. Они легче всего реагируют с галогенами (Си при обычной, Ag при повышенной температуре). С кислородом непосредственно взаимодействует только медь и на воздухе покрывается плотной зелено-серой пленкой карбонатов. С серой непосредственно взаимодействуют Си и Ag. С водородом медь и ее аналоги не реагируют. [c.572]
С кислородом непосредственно взаимодействует только медь. При температуре красного каления образуется СиО, а при более высокой температуре Си О-, с серой непосредственно взаимодействуют Си и Ag [c.622]
Обе фазы реакции протекают, частично налагаясь одна на другую. Если бы не было осложняющих процессов, в раствор переходила бы только медь, но не сера. Видимо, взаимодействие сульфидов меди с цианидом в присутствии кислорода осложнено частичным окислением элементарной серы и реакцией ее с ионами цианида и щелочи, чему способствует аморфный характер слоя серы, образующегося на поверхности диска (как показали наши опыты, плавленая сера при низкой щелочности раствора практически не взаимодействует с цианидом). Это подтверждается наличием некоторого количества серы, найденного в растворе. [c.165]
Реакции взаимодействия сульфидов меди с цианидом в присутствии кислорода — реакции (дне) — также термодинамически вполне возможны, хотя они протекают с неполным окислением серы. Убыль свободной энергии для реакций (д) и (е) соответственно равна—43,63 и —39,23 ккал. Однако, как было отмечено выше, образование пленок на реагирующей поверхности тормозит и осложняет изучаемые процессы. [c.167]
Сера, селен и теллур легко взаимодействуют с медью при нагревании или при растирании в ступке.
Сходство электрохимического поведения столь различных минералов в одинаковых условиях можно объяснить тем, что с электролитом взаимодействуют ионы меди, переходящие в раствор, причем образуются комплексные соединения одного и того же состава. Электрохимические процессы окисления сульфидов гораздо сложнее, чем металлов, тем более, что непременным участником их является сера [4]. Образование элементарной серы — одна из главных причин торможения процесса при потенциалах, недостаточных для окисления серы в сульфат или другие растворимые формы. Поэтому и невозможно практически проводить электрорастворение сульфидов при постоянном потенциале в области максимума тока или при еще менее положительных значениях потенциала [13]. [c.175]
Для первой и третьей групп главными потенциал-определяющими процессами на начальных стадиях электрорастворения являются, по-видимому, процессы окисления меди (I) и железа (II) и взаимодействие их с электролитом в случае минералов второй группы — окисление только серы (в случае СиЗ) и взаимодействие ионов меди (II) с электролитом. Несколько особое положение занимает борнит, поведение которого определяется как медью (в комплексообразующих растворах), так и железом (в кислой среде). [c.176]
Серу- и фосфорсодержащие присадки. Эти присадки эффективны в широком диапазоне режимов работы. Санин с сотрудниками [22, с. 207] методом радиоактивных индикаторов исследовали механизм действия трибутилтритиофосфита на медь (в виде тонких пластинок) в среде углеводородов. Оказалось, что при повышенной температуре трибутилтритиофосфит разлагается с выделением фосфина и меркаптана, последний взаимодействует с медью и превращается в меркаптид меди (С2Н95)2Си, который при повышенной температуре также может разлагаться на сульфид меди, бутилен и сероводород. Фосфин же реагирует с медью, образуя фосфид меди. Пленки фосфидов, меркаптидов и сульфидов меди оказывают защитное действие на металл.
В окисленных рудах сущность этого процесса сводится к восстановительной плавке их в шахтной печи. При этом в результате действия высоких температур печи (максимум 1450°) и наличия восстановительной атмосферы (СО) вследствие неполного сгорания топлива (кокса) происходит разложение сложных соединений, образующих рудные минералы, восстановление окислов меди и шлакование . окислов железа кремнеземом пустой породы и флюса. Конечными продуктами такой чисто восстановительной плавки, применяемой при весьма богатых окИ)Сленных медных рудах с содержанием меди 15% и выше, являются черновая медь и шлак. Более распространен, однако, другой способ восстановительной плавки окисленных медных руд (сульфидирующий), при котором в печи в результате взаимодействия восстановленной меди и закиси меди с сернистым железом и другими содержащими серу реагентами происходит дополнительная реакция сульфидизации меди. Конечные продукты такой плавки — штейн и шлак. [c.62]
Взаимодействует ли медь с водородом, серой, галогенами [c.67]
В заключение отметим, что неравноценность связей отдельных сортов атомов с расплавом должна приводить в ряде случаев к микронеоднородности. Это обстоятельство неоднократно подчеркивалось различными авторами, правда, лишь в качественной форме. Так, в работе (91] предполагается, что связь серы с медью больше, чем с железом. Поэтому введение меди в расплав заставляет атомы серы скопляться вблизи атомов меди. Энергия взаимодействия серы с расплавом увеличивается, а активность ее падает. [c.468]
Опыт ы. Серу нагревают в колбе до кипения и в пары вносят тонкий лист меди, предварительно нагретый в пламени. Последний сгорает со вспышкой Си + 3 uS, Так же взаимодействует сера с железными опилками и цинком (стр. 23). Ртуть, растертая в ступке с порошком серы, образует сульфид ртути HgS черного цвета. [c.367]
Золото и серебро на воздухе не изменяются, а медь покрывается зеленовато-серой пленкой основных карбонатов (СиОН)гСОз НгО. С кислородом непосредственно взаимодействует только медь Си + + Ч2О2 = СиО. [c.305]
При взаимодействии серы с металлами образуются сульфиды. При комнатной температуре сера соединяется со ш елочными и ш е-лочноземельными металлами, а также с медью, серебром, ртутью при нагревании — со свинцом, оловом, никелем, кобальтом, цинком, марганцем, хромом, алюминием. С железом сера реагирует в присутствии влаги. Тугоплавкие металлы и металлы платиновой группы, за исключением платины, взаимодействуют с серой при высокой температуре и в мелкораздробленном состоянии. [c.18]
Ацетилениды щелочных металлов, магния в частности, тся солеобразными, то есть связь С-Металл носит й характер Напротив, связи С-А , С-Си носят в ос- ом ковалентный характер, устойчивы к воде и разла-ся кислотами Ацетилениды серебра или меди легко аются при взаимодействии алкинов, имеющих концетройную связь, с аммиачными растворами солей сера, меди и используются для выделения таких алкинов 1лесей в чистом виде [c.323]
Медь — электроположительный (благородный) металл, в электрохимическом ряду напряжений стоит после водорода, поэтому переводится в раствор только кислотами-окислителями. При взаимодействии с азотной кислотой различной концентрации образуется смесь нитрозных газов, а с горячей концентрированной серной кислотой — диоксид серы. Медь можно перевести в раствор также обработкой растворами РеС1з или СиСЬ [c.393]
При температуре красного каления медь реагирует с кислородом, образуя СиО, а при более высокой температуре СиаО с серой медь образует Си.зБ или иестехиометрические формы этой фазы. Медь взаимодействует с галогенами, но не растворяется в отсутствие воздуха в разбавленных кислотах, не являющихся окислителями и ком-плексообразователями. Медь легко растворяется в азотной и серной кислотах. Она также растворяется в аммиаке и растворах цианида калия Б присутствии кислорода, как видно из значений потенциалов [c.313]
Соединения, обладающие бактерицидной и фунгицидной активностью и имеющие хелатированный ион металла в качестве солюбилизирующей группы в водных или неводных системах, были получены путем взаимодействия карбоната меди и производных эти-лендиаминотриуксусной кислоты. Эти соединения являются также веществами, подавляющими рост водорослей, смазывающими присадками, кислыми связующими Эффективность использования 12 медных хелатов для пропитки парусины, с целью придания ей противогнилостной устойчивости, была оценена путем измерения потери прочности на разрыв при хранении в почве в течение 90 дней. Количество используемых хелатов соответствовало такому же содержанию меди (0,6—0,7% и выше) никакого ухудшения качества парусины в течение испытаний не наблюдалось 5. В другой серии испытаний из 139 различных исследованных органических и металлоорганических соединений самыми активными также оказались медные хелаты, особенно бензоилацетона и бензоилацетоаль-дегида [c.289]
При взаимодействии серы с большинством металлов при повышенных температурах образуются сульфиды и полисульфиды. Исключение составляют золото и некоторые металлы платиновой группы. Жидкий бром взаимодействует уже при комнатной температуре со многими металлами. К ним относятся медь, серебро, алюминий, олово, свииец, титан, ванадий, ниобий, хром, молибден, вольфрам, железо, кобальт, никель. Чистые жидкие органические неэлектролиты типа бензола, хлороформа не вызывают коррозии металлов. Ряд примесей, которые могут содержаться в них, например иод, вода, способствуют коррозии металлов. Серебро с иодом, растворенным в хлороформе, взаимодействует при комнатной температуре с образованием пленки иодида серебра. Проведенные исследования показали, что скорость взаимодействия серебра с иодом контролируется скоростью диффузии иода через пленку иодвда серебра, что и определяет параболическую зависимость толщины пленки от времени коррозии. [c.30]
Перегрев печи в период кипенияж Если к началу периода кипения медь нагрета выше 1200°, то кипение меди не наступает или идет очень слабо. Чтобы не затягивать плавку и не увеличивать расход топлива, нужно уметь определять причину отсутствия кипения . Как уже упоминалось, кипение меди обусловлено выделением сернистого газа, образующегося при взаимодействии закиси меди с полусернистой медью. Так как эта реакция обратима (стр. 112), то при понижении температуры меди реакция идет с выделением сернистого газа, и медь кипит , [ оборот, при повышег1ИИ температуры меди сернистьп газ ие выделяется. Состояние нагрева печи определяют забрасыванием серы в печь. Если кипение меди при этом не усиливается, а иа поверхио- [c.125]
С какими из предложенных веществ и при каких условиях будет взаимодействовать сера Вещества железо, хлор, золото, азот, натрий, оксид железа (II), оксид железа (III), оксид серы (IV), оксид серы (VI), соляная киалота, гидроксид меди (II), гидроксид натрия, сульфид железа (II). [c.101]
chem21.info
Система медь — железо — сера
Разумеется, существуют многочисленные другие факторы, связанные с характеристиками катализатора, которые влияют на реакции крекинга и, следовательно, косвенно оказывают влияние и па вторичные реакции. Некоторые из этих факторов подробно рассмотрены в литературе [48, 56]. К ним, в частности, относятся а) тип катализа тора б) удельная поверхность в) размер зерна г) распределение по размерам пор д) отравление серой е) отравление металлами ж) отравление азотом. Из этих факторов единственным, оказывающим непосредственное влияние на те явления, которые можно назвать вторичными реакциями, по-видимому, является отравление катализатора металлами. Отравление катализатора щелочными металлами частично ослабляет кислотный характер катализатора и тем самым снижает его активность во всех важных для промышленного процесса реакциях. Следовательно, продукты, образующиеся при крекинге на катализаторе, отравленном щелочными металлами, будут по своему характеру и составу приближаться к продуктам термического крекинга. Обычно ка катализаторах отлагаются металлы из аипарат фы установки или содержащиеся в сырье железо, никель, ванадий и медь. Известно, что при условиях, обычно существующих в системе каталитического крекинга, тяжелые металлы способны разлагать углеводороды на углерод и водород. Поэтому высказывалось предположение [39], что эта реакция просто налагается на обычные реакции крекинга. Однако, поскольку алкены обладают высокой реакционной способностью и имеются основания предполагать, что они наиболее подвержены разложению, влияние металлов можно рассматривать как ре зультат непосредственного их воздействия па вторичные реакции. Суммарный результат будет аналогичен результатам других вторичных реакций, т. е. выход кокса и легких газов увеличивается и выход бензина снижается, [c.158]Для поддержания жизни, как показано в настоящее время, существенное значение имеют около 20 элементов, хотя живая ткань часто содержит в следовых количествах все элементы, находящиеся в окружающей среде. Основные элементы живых систем — это водород, углерод, азот и кислород (2—60 ат. %). Установлено, что из всех элементов, присутствующих в следовых количествах (0,02—0,1 ат. %), фосфор, сера, хлор, натрий, калий, магний и кальций необходимы для поддержания процессов жизнедеятельности. Некоторые из элементов, присутствующих в сверхмалых количествах (менее 0,001 ат. %), также относятся к числу необходимых. Это марганец, железо и медь. Весьма вероятно, что ванадий, кобальт, молибден, бор и кремний также имеют общее биологическое значение, однако показать, что тот или иной элемент, присутствующий в сверхмалых количествах, биологически необходим, часто весьма трудно. В отдельных случаях биологическая роль элемента для растений и животных может быть установлена по тем последствиям, которые вызывает его отсутствие в почве. Так, отсутствие меди в почве некоторых районов Австралии вызвало нарушения в нервной системе овец и привело к заболеванию их анемией и к выпадению шерсти. Утверждалось также, что недостаток в почве бора приводит к аномалиям в развитии свеклы и сельдерея и к ухудшению качества [c.7] Подытоживая рассмотренные материалы, можно сделать вывод, что жидкие штейны в своей основе состоят из однородной жидкой фазы, в которой присутствуют железо, медь и сера. Обычно содержание серы меньше, чем должно быть по стехиометрическому расчету на сульфиды обоих металлов поэтому штейны нельзя рассматривать как смеси FeS и СпгЗ. Некоторое количество окислов железа может растворяться в сульфидной фазе, причем магнетит часто присутствует как отдельная фаза. Если содержание серы в штейне снижается, то сплав попадает в область расслаивания тройной системы, и в зависимости от состава штейна выделяется новая фаза, обогащенная железом или медью. При охлаждении жидкого сплава любая из четырех фаз (твердых растворов железа, меди, uoS и FeS) может выкристаллизовываться первой. Остаток штейна затвердевает в виде тройной эвтектики. Возможно, что окислы железа входят в эту эвтектику. Тройная система Си—Ее—S изучена еще далеко не полно, и ничего не известно о четвертой системе Си—Ее—S—О очень желательно более глубокое изучение этих систем. [c.37]
Длинные периоды периодической системы можно описать как короткие, в которые включено десять дополнительных элементов. Первые три элемента длинного периода между аргоном и криптоном — металлы калий, кальций и скандий —по свойствам напоминают соответствующие металлы предшествующего короткого периода — натрий, магний и алюминий. Аналогично последние четыре элемента — германий, мышьяк, селен и бром — похожи на предшествующие родственные им элементы, т. е. соответственно на кремний, фосфор, серу и хлор. Остальные элементы длинного периода — титан, ванадий, хром, марганец, железо, кобальт, никель, медь, цинк и галлий — не имеют родственных им более легких аналогов они по своим свойствам не очень похожи ни на один легкий элемент. [c.472]
Система медь — железо — сера [c.16]
Помимо воды, корневая система берет из почвы различные минеральные вещества азот (аммонийный и нитратный ионы), фосфор (моно- и дифосфаты), калий, кальций, магний, серу (сульфатный ион), железо, марганец, медь, молибден, бор (борная кислота), цинк и другие микроэлементы. [c.46]
В состав растительных и животных организмов входят почти все элементы периодической системы Д. И. Менделеева. Содержание одних элементов в тканях организма составляет от нескольких процентов до сотых долей процента (по массе) — это макроэлементы водород, кислород, углерод, азот, фосфор, сера, кремний, калий, натрий, кальций, магний и железо. Другие элементы требуются растениям и животным в очень малых количествах, и содержание их колеблется от тысячных до стотысячных долей процента. Это микроэлементы — бор, марганец, медь, молибден, цинк, кобальт, иод и др. [c.161]
Двадцать из первых тридцати элементов периодической системы, а также четыре более тяжелых элемента необходимы для жизни. Водород, углерод, азот и кислород присутствуют в организме в виде многих соединений. Натрий, калий, магний, кальций и хлор присутствуют в виде ионов в крови и межклеточных жидкостях. Фосфор в виде фосфат-иона обнаружен в крови эфиры фосфорной кислоты содержатся в фосфолипидах и других соединениях гидроксиапатит содержится в тканях костей и зубов. Сера — важная составная часть инсулина и других белков. Фтор, содержащийся в виде фторид-иона в питьевой воде, необходим для образования прочных зубов и костей он необходим также для нормального роста крыс. Кремний, ванадий, хром, марганец, железо, кобальт, медь, цинк, селен, молибден, олово и иод в небольших количествах необходимы для жизни (микроэлементы). Сведения о некоторых из этих элементов были получены только в опытах с животными (особенно с крысами), однако весьма вероятно, что полученные данные относятся также и к человеку. [c.418]
Штейны медной плавки, получаемые в результате переработки медных руд или концентратов любым пирометаллургическим способом, т. е. плавкой в шахтных или отражательных печах, представляют собой многокомпонентные системы, основными составляющими которых (в сумме 80—90%) являются медь, железо и сера. Содержание меди в штейнах колеблется в пределах 10—62%. Среднее содержание меди обычно 20—45%. [c.63]
Возможен некоторый ограниченный контроль коррозионной активности консервируемых продуктов. Незначительное регулирование pH может быть полезным мероприятием, особенно если олово анодно к стали. Коррозионные ускорители, такие как нитраты, сера и медь, могут быть исключены из вводимых добавок, таких как вода и сахар, а также из реагентов, которыми опрыскивают зерновые культуры с целью ускорения созревания урожая. Влияние соединений серы, которые остаются от опрыскивания, является сложным [24], однако они определенно изменяют полярность системы олово — железо. [c.425]
Соотношения между температурой и давлением определены также для трехфазных линий соединений в системах железо — сера, кобальт — сера, никель — сера [53], соединений М Сн2 и Mg.. u в системе медь — магний [54]. [c.89]
Начиная с четвертого ряда системы, наступает некоторое усложнение. Не всегда элемент этого ряда обнаруживает большое сходство с теми элементами, которые находятся вместе с ним в одной группе (в одном и том же вертикальном столбце). Так, тяжелый металл хром не похож на серу, но все же и для хрома, как и для серы, известны соединения, в которых он шестивалентен. Точно так же и металл марганец резко отличается от хлора, в одной группе с которым он находится, хотя и для марганца известны соединения, где его валентность равна семи. Таким образом, отсчитав от хлора семь элементов, мы не встречаем элемента с ним сходного. Более того, все эти семь элементов являются металлами. Металлами же являются н железо, кобальту и никель, которые стоят в восьмой группе системы. Следующий элемент, медь, весьма мало сходен с натрием, в одной группе с которым медь находится, и только с тридцать третьего элемента, мышьяка, начинается повторение свойств мышьяк попадает в одну группу со сходным элементом фосфором, селен помещается под серой, бром попадает в одну группу с хлором, а инертный газ криптон находит себе место в одной группе с другими инертными газами — гелием, неоном и ксеноном. Эти два ряда составляют большой период. Он состоит из 18 элементов. [c.239]
Элементарная сера действует на медь, серебро и ртуть и слабо реагирует с другими металлами при обычных температурах. При повышенных температурах элементарная сера действует на железо. Вследствие экзотермичности эта реакция может идти очень энергично. Она возможна как при хранении горячих нефтепродуктов в резервуарах, так и в топливной системе двигателя. [c.20]
Кальций, который содержится во всех тканях растений и способствует развитию корневой системы, сера, которая играет весьма существенную роль в процессах, связанных с дыханием растений, магний и железо, при недостатке которых листья бледнеют, потребляются растениями в значительно меньших количествах, но и они необходимы для их нормального роста и развития. Все это так называемые макроэлементы. Микроэлементы (бор, марганец, медь, цинк, магний и др.) потребляются растениями в гораздо меньших количествах, но они играют в жизни растений важную роль. [c.143]
Системы свинец — сера, кадмий — теллур, железо — кислород, медь — кислород и кремний — углерод [c.81]
Доказано существование связи цинка с серусодержащими группами белка некоторых цинксодержащих ферментов — дрожжевой алкогольдегидрогеназы, угольной ангидразы, щелочной фосфатазы. У цинка более, чем у иона марганца (Мп2+), выражена способность координироваться с азотсодержащими группами. Большим сродством к сере обладают также ионы меди одновалентной (Си+) и менее — меди двухвалентной (Си +). Вполне вероятно, что вся Си + связана в белках с серой, с остатками цистеина и гистидина. Ионы Ре2+, Сц2+, Со + имеют более выраженную тенденцию связываться с азотсодержащими груп-, пами, чем с кислородсодержащими (Orgel, 1958). Особенно четко это выражено для двухвалентной меди. Железо трехвалентное (Ре +) напротив предпочитает комплексироваться с кислородными донорами. Таким образом, избирательное распределение ионов металлов между молекулами в биологических системах определяется сродством катионов к таким функциональным группам белков, как сульфидные и кислородсодержащие анионные [c.31]
Из металлов наиболее характерными каталитическими свой-стнами обладают элементы VUl группы периодической системы элементов Д. И. Менделеева. Для ряда процессов катализаторами являются железо (синтез аммиака) кобальт, никель, иридий, платина, палладий (гидрирование и для последних — окисление двуокиси серы). Кроме того, металлы VUl группы являются катализаторами и других процессов разложени.я перекиси водорода, получения гремучего газа, окислеиия аммиака, метанола, метана, окиси углерода, дегидрирования спиртов и т. д. Каталитической активностью обладают и соседние (в периодической системе) элементы медь, серебро, отчасти золото, возможно цинк и кадмий. [c.363]
Избыток кремния приводит к небольшому уменьшению сопротивления КР, однако сопротивление при этом остается относительно высоким [51]. Добавки марганца и хрома к сплавам серии 6000 регулируют размер зерна и увеличивают как прочность, так и пластичность [115]. Сплавы, имеющие добавки хрома и марганца, имеют минимальную чувствительность к межкристаллитной коррозии в растворах типа соль — кислота и соль — пероксид водорода, особенно в присутствии небольших количеств примесного элемента железа [115]. Медь также способствует повышению прочности сплава, однако при содержании>0,5 % Си сопротивление сплава к коррозии понижается [116]. Хотя сплавы системы А1 — Мд — 51 имеют высокое сопротивление общей коррозии и КР [51, 115], определенные отклонения от стандартной термической обработки могут сделать эти сплавы чувствительными к КР в состоянии естественного старения Т4. Это имеет место, когда температура под закалку слишком высока, а скорость закалки невысокая [51, 117]. Даже в этих условиях КР на поперечных образцах сплава 6061-Т4 происходило только на высоконапряженных пластически деформированных образцах и отсутствовало при испытании образцов на растяжение, напряженных на 75 % ог предела текучести. Искусственное старение закаленного с низкой скоростью сплава 6061-Т4 до состояния Тб устраняло тенденцик> к КР [51]. [c.233]
Каждая клетка состоит из огромного числа атомов и молекул. Попробуем разобраться, насколько они универсальны и какие функции выполняют в клетках Оказалось, что из периодической системы элементов всего лишь шесть биоэлементов используются для построения подавляющего числа биологически значимых молекул углерод С, ьшслород О, водород Н, сера 8, азот N и фосфор Р. Еще 16 микроэлементов присутствуют в клетках в различных количествах и соотношениях. К ним относятся железо Ре, медь Си, цинк Zn, марганец Мп, кобальт Со, иод I, молибден Мо, ванадий V, никель N1, хром Сг, фтор Р, селен 8е, кремний 81, олово 8п, бор В, мышьяк Аз и пять ионов натрий Na , калий К , магний Mg , кальций Са ” , хлор С1 . Каков бы ни был принцип отбора атомов для процессов жизнедеятельности, он не связан с их распространенностью в природе. Например, из галогенов только хлор и иод выбраны природой, хотя фтор и бром обладают не меньшей доступностью. По-видимому, в основу отбора положен принцип пригодности и целесообразности. Например, шесть основных биоэлементов имеют набор свойств, достаточный для построения почти всех необходимых для клетки молекул. [c.6]
Поскольку имеется много данных, указывающих на образование свободных тиольных радикалов К — 5 при диссоциации дисульфидов или при одноэлектронном окислении тиолов закис-ными солями железа и меди, вполне вероятно, что эти энзимы катализируют цепные реакции путем окисления и восстановления тиольных групп в свободные тиольные радикалы, подобно тому, как тиофенол может быть передатчиком цепи при автоокислении 2, а амилдисульфид является катализатором автоокисления (стр. 280). Протеины, содержащие серу, могут быть активными катализаторами в том случае, если хотя бы ничтожная часть их дисульфидных связей может мгновенно диссоциировать на радикалы и затем дегидрировать соседний (т. е. адсорбированный) метаболит и начать реакционную цепь в биологических системах, подобно тому, как алкилдисульфиды могут инициировать дегидрирование тетралина [c.308]
Яды, которые отравляют катализаторы очистки, попадают на них либо как составные части или продукты реакции топлива, либо это смазочные масла, либо яды попадают из других источников, например это могут быть материалы, из которых изготовлены выхлопные системы (железо, никель, хром, медь). Основным ядом, содержащимся в топливе, являются добавки соединений свинца, которые благодаря специально вводимым веществам (дибром- или дихлорэтилен) выводятся из камеры внутреннего сгорания в выхлопную систему двигателя. Другим характерным ядом являются содержащиеся в топливе соединения серы [0,01—0,1% (масс.) в выхлопных газах]. Основным ядом, содержащимся в смазочных материалах, являются соединения фосфора, образующиеся при разрушении добавок к маслам одновременно может выделяться и сера. [c.94]
В первую книгу Н—Сг серии Популярная библиотепа химических элементов ( Наука , 1971) вошли статьи о первых 24 элементах периодической системы. Эта вторая ттга посвящена элементам с атомными номерами от 25 до 50. Среди них главный металл современной цивилизации — железо, важнейшие цветные металлы медь цинк, серебро, олово. Здесь же читатель найдет сведения о германии — элементе с которого началась эра полупроводников, а также о других ваокпых для полупроводниковой техники материалах селене, соедине- ниях индия, галлия, мышьяка. Широко представлены в этой книге легирующие металлы, витамины стали им посвящены статьи Ни-кель Кобальт , Молибден . Марганец . Рассказ о первом искусственном элементе, технеции, дополнен интервью с первооткрывателем этого элемента итальянским ученым Эмилио Сегре. [c.2]
МЕДЬ. Си. Химический элемент I группы периодической системы элементов. Одновалентный металл. Атомный вес 63,54. В природе встречается преимущественно в соединениях с серой, железом, кислородом. Запасы М. в почвах составляют от 1,5 до 30 мг[кг и более, в усвояемом состоянии от 0,05 до 14 жг/ з. Особенно много М. в красноземах. Песчаные почвы беднее М., чем глинистые и суглинистые. Особенно бедны М. торфяные почвы (2—3 мг на 1 кг сухого веса торфа), где она к тому же в значительной мере содержится в медноорганических соединениях, малодоступных для растений. В небольших количествах М. входит в состав живых организмов, в том числе растений и животных. Она входит в состав ряда ферментов. М. положительно влияет на белковый и углеводный обмен растений. Недостаток М. у растений проявляется в побелении листьев, злаки при этом кустятся, но не образуют зерна. М. входит в состав многих ядохимикатов (лмедный купорос, бордосская жидкость, нафтенаты меди, трихлор нолят меди, хлорокись меди и др.). Применение их сиособсгвует и усилению медного питания растений. Медные препараты постепенно заменяются синтетическими органическими соединениями, что повышает нужду в М. в тех почвах, где ее недостаточно. В целях устранения недостатка М. применяются медные удобрения. У животных при недостатке М. в растительных кормах развивается заболевание ли-зуха, которое устраняется введением в рацион медного купороса. Медные препараты применяются и в ветеринарной практике (медный купорос). [c.173]
СЕРА. S. Химический элемент VI группы периодической системы элементов. Атомный вес 32,06. Металлоид с переменной валентностью, может быть 2-, 4- и 6-валентной. В природе встречается в виде элементарной С. и в соединениях с железом (пирит или железный колчедан), медью (медный колчедан), цинком (цинковая обманка), свинцом (свинцовый блеск), кальцием (гипс, ангидрит) и др. Содержится в углях и нефти. В почве С. находится в составе гумуса и в виде сульфата, преимущественно гипса. Гумус и растительные остатки содержат С. в восстановленной форме, в составе белков, аминокислот. Окисление происходит в почве в результате жизнедеятельности аэробных бактерий. В анаэробных условиях другие бактерии восстанавливают сульфаты до сероводорода, который теряется в атмосфере. Крайне бедны С. малогумус-ные подзолистые песчаные почвы, на которых сульфатные удобрения, как правило, более эффективны, чем хлориды. В промышленных районах С. поступает в почву из атмосферы, куда улетучивается сернистый газ при выплавке металлов из сернистых руд, при сжигании топлпва. Обогащение почвы С. происходит также при внесении навоза и других органических удобрений, простого суперфосфата (содержащего более 407о гипса), су.1ьфата аммония и некоторых калийных удобрений. [c.259]
Преувеличенная некоторыми историками оценка значения закона изоморфизма в создании системы 1826 г. связана с тем, что а posteriori, после 1826 г., были установлены новые изоморфные группы, послужившие конкретным подтверждением всех выводов Берцелиуса. Так, в частности, в 1827 г. Митчерлих установил изоморфность хромовокислых и сернокислых солей, а в 1830 г.— изоморфность перманганата н перхлората калия [95]. Митчерлих так заканчивает свою статью Изоморфизм перманганата и перхлората имеет огромное значение в связи с вопросом об отношении кристаллической формы и химического состава, ибо большинство металлов может теперь сравниваться в газовом состоянии. Марганец, в своей низшей степени окисления. изморфен с известью, с окисью меди, с закисью железа и т. д., окись марганца — с окисями железа, хро.ма, алю.миния, а марганцовистая кислота — с хромовой, серной и селеновой а марганцовая с хлорной, поэтому можно сравнивать перечисленные металлы, серу и селен с кислородом, хлором, иодом и т. д. [95]. Эти слова ученнка [c.142]
В настоящее время изучено более 1ридиати диаграмм состояния систем кремния с другими элементами. Многие из них имеют эвтектический характер (например, системы кремния с серебром, алюминием, оловом, галлием, индием, сурьмой и др.). С литием, фосфором, мышьяком, марганцем, железом, кобальтом, никелем, серой, селеном, магнием и некоторыми другими элементами кремний дает химические соединения [61]. Диаграмма состояния кремний—медь изучена также в области очень малых концентраций меди [40]. [c.65]
X. Штейнле [117] обнаружил, что масла не вызывают омеднения, если они содержат не более 0,3% смолистых веществ, менее 0,2% серы и стабильность их не хМенее 96 ч. Согласно X. Штейнле механизм омеднения можно представить следующим образом. Любое масло растворяет некоторое количество меди, которое зависит в основном от концентрации в масле смолистых веществ и серы. Растворенная медь находится в масле в виде органического комплекса с компонентами смолы. Другие примеси, такие как вода или продукты разложения масла, увеличивают растворимость меди. В результате взаимодействия хладона и масла при высоких температурах получается НС1. Если концентрация НС1 превысит некоторую критическую концентрацию ( 1 г/кг), то комплекс становится нестабильным. Медь осаладается на железе, а железо переходит в раствор. В обмен на каждый атом растворенной меди растворяются два атома железа. Присутствующие в системе ионы хлора стабилизируют растворенное железо в виде комплекса. [c.38]
Активности в тройной системе Fe—Си—S изучены очень мало. Единственное экспериментальное исследование проведено Розен-квисто.ч и Коксом [175], которые определили влияние добавки меди (до 14%) на активность серы в жидком железе при содержании серы в расплаве в интервале от О до 3,5%. Результаты их работы, приведенные на рис. 11 (две нижние кривые), показывают, что добавка меди незначительно снижает активность серы. [c.35]
Ограниченность имеющихся сведений затрудняет определение активностей различных компонентов в области составов, важных для медной плавки (т. е. на площади, ограниченной на рис. 3 областью расслаивания, с одной стороны, и линией, соединяющей точки U2S и FeS, — с другой). Тем не менее можно предполагать, что в этой области тройной системы активности FeS, особенно U2S, не очень отличаются от их молярных долей. Кроме того, из диаграммы двойных систем ясно, что упругость паров серы, которая пропорциональна квадрату активности, должна очень быстро увеличиваться с повышением содержания серы в штейне, достигая значения порядка 1 атм, на линии, соединяющей uaS и FeS в этом причина недостатка серы в заводских штейнах. Активность меди должна быть высокой в расплавах, лежащих около области расслаивания, но должна резко уменьшаться с увеличением содержания серы. Активность железа, повидимому, изменяется аналогичным образом. [c.35]
Никель — химический элемент VIII группы периодической системы элементов Менделеева. Ближайшими к нему по таблице элементами являются железо и кобальт, с одной стороны, и медь,—с другой. Чистый никель имеет серебристобелый цвет с сильным блеском, не тускнеющий на воздухе. Он тугоплавок, тверд и легко полируется. Без наличия примесей (особенно серы) он обладает хорошей тягучестью и ковкостью, может развальцовываться в очень тонкие листы и протягиваться в проволоку. [c.400]
Группа так называемых редкоземельных элементов как бы выпадает из таблицы периодической системы, почему существование этой группы, до развития теории строения атомов, долгое время являлась загадкой. Название этих элементов — редкие земли — сохранилось за ними не совсем правильно. Раньше считали, что они действительно встречаются очень редко, однако в настоящее время уже установлено, что многие из элементов редких земель (лантан, церий, празеодим, неодим и самарий) по своей распространенности в природе мало уступают или даже превосходят хорошо известные элементы, играющие большую роль в технике. Группа редких земель состоит из 15 элементов. Среди этих редкоземельных металлов есть и своя медь — празеодим — желтого цвета и свой свинец — церий серого цвета и свое железо и т. Д. есть среди этой группы и лег коплавкие металлы, например тербий, который плавится при 310°, и наряду с этим имеется также и метал иттербий, плавящийся при 1800°. [c.704]
chem21.info
Минералы и микроэлементы – Медь, Хром, Сера
Медь
Медь необходима для функционирования многих ферментов и обменных процессов. Она нужна для роста и восстановления костей и участвует в выработке красных кровяных клеток и соединительной ткани, метаболизме жиров. Недостаток меди может вызывать атеросклероз и остеоартрит. Исследования показали, что нарушение баланса «цинк — медь» может способствовать развитию некоторых заболеваний.
Недостаток меди в организме — крайне редкий случай. Это состояние приводит к снижению числа белых кровяных клеток и, как следствие, к ухудшению иммунитета, а также к изменению структуры волос. Но избыток меди не менее вреден для организма, в частности для суставов, десен и центральной нервной системы.
Хром
Хром участвует во многих метаболических процессах, в частности в усвоении и накапливании сахаров и жиров. Этот микроэлемент необходим для функционирования инсулина и, как следствие, для профилактики диабета, для нормальной работы иммунной системы; кроме того, хром нужен для нормальной работы произвольных мышц. Этот минерал содержится в цельной, нерафинированной пище, в том числе в непросеянной муке, цельных злаках, крупах, пивных дрожжах, орехах, мясе, печени, почках и свежих фруктах.
Недостаток хрома может быть причиной раздражительности и депрессии, ухудшения памяти и нарушений сна. Рекомендуемая дневная норма — 0,05—0,2 мг.
Сера
Сера необходима для метаболизма аминокислот и выработки протеинов, она является важным структурным компонентом некоторых тканей — в частности, костей, ногтей, зубов и кожи. Большое количество серы содержат такие продукты питания: яйца, мясо, печень, бобовые, лук, чеснок, орехи, пивные дрожжи, рыба и молочные продукты.
Случаев недостатка серы зафиксировано не было, поэтому рекомендуемой дневной нормы не существует.
3
feldsherstvo.ru
Сера, определение в меди – Справочник химика 21
II) и других металлов, образующих с пиридином в присутствии тиоцианата и других анионов малорастворимые соли для отделения лития от калия и натрия при фотометрическом определении меди (II) и сурьмы (III), а также для обнаружения элементарной серы. [c.249]Определение меди в сульфате меди аммиачным методом веду по следующей схеме 1) готовят серию стандартных растворов 2 определяют оптическую плотность приготовленных растворов н фотоэлектроколориметре 3) строят градуировочный график. [c.350]
Олово. Методы определения сурьмы Олово. Методы определения висмута Олово. Методы определения мышьяка Олово. Методы определения меди Олово. Методы определения свинца Олово. Методы определения железа Олово. Метод определения серы Олово. Методы определения алюминия Олово. Методы определения цинка [c.581]
Один из простейших приемов колориметрического анализа — метод стандартных серий. Этот анализ выполняют в специальных цилиндрах или пробирках. Пробирки для определения меди должны плотно закрываться, чтобы не улетучивался аммиак. [c.203]
Освоен и применялся рентгенофлуоресцентный метод анализа продуктов цеха —шихты, шлаков, штейнов, руды. Лаборатория, размешенная в здании цеха, была оснащена двумя рентгеновскими анализаторами ФРА-Ш и двумя рентгеновскими квантометрами ФРК-2, рентгеновским спектрометром РС-5700. Медь в шлаках и штейне определяли при помощи прибора ФРА-1М. Результат анализа можно было иметь через 3—5 мин после доставки пробы. Кремний, железо, кальций и серу определяли на квантометре ФРК-2 в этом случае продолжительность анализа одной пробы — 15 мин. Правильность анализа обеспечивалась применением стандартных образцов, химический, вещественный и гранулометрический состав которых близок к составу анализируемых проб. Относительная ошибка рентгенофлуоресцентных определений меди составляла 7% при содержаниях ее 0,05—0,15% и до 2,5% при содержаниях 8—30%. Между прочим, относительная ошибка анализа тех же проб химическими методами составляла соответственно 16 и 2%. Результаты рентгенофлуоресцентных анализов использовали для оперативного управления производством и составления балансов. [c.151]
В работе [4] приведены еще две методики определения примесей полярографическое определение цинка, кадмия и свинца амальгамным способом с накоплением (чувствительность онределения цинка 3-10 %, кадмия и свинца 1-10 °%) и радиоактивационное определение меди, цинка, теллура, золота, мышьяка, сурьмы, селена и серы (чувствительность [c.358]
При образовании K2S (т.-е. при соединении 32 ч. серы с 78 ч. калия) выделяется около 100 (ХЮ единиц тепла, почти столько же при соединении пайного количества натрия для aS, SrS — около 90 ООО единиц тепла, для Zn, d — около 40 ООО единиц тепла, для железа, Со, Ni — около 20000 единиц тепла. При соединении серы с медью, свинцом и серебром отделяется меяее тепла. По определениям Томсена, сера с водородом развивает тепло ] (№, S) = 4512 единиц тепла. [c.511]
Сплавы медно-цинковые. Методы определения кремния Сплавы медно-цинковые. Методы определения фосфора Бронзы оловянные. Методы определения меди Бронзы оловянные. Методы определения свинца Бронзы оловянные. Методы определения олова Бронзы оловянные. Методы определения фосфора Бронзы оловянные. Методы определения никеля Бронзы оловя1шые. Методы определения цинка Бронзы оловянные. Методы определения железа Бронзы оловянные. Методы определения алюминия Бронзы оловянные. Методы определения кремния Бронзы оловянные. Методы определения сурьмы Бронзы оловянные. Методы определения висмута Бронзы оловянные. Методы определения серы Бронзы оловянные. Метод определения марганца Бронзы оловянные. Метод определения магния Бронзы оловянные. Методы определения мышьяка Бронзы оловянные. Метод определения титана Сплавы медно-фосфористые. Технические условия Бронзы оловянные, обрабатываемые давлением. Марки Сплавы медно-фосфористые. Методы определения содержания фосфора [c.574]
При анализе селена и теллура на содержание серы основу отделяют в виде элементных теллура и селена. Определение серы в меди и никеле проводят без отделения основы. [c.187]
Медиана, в противоположность среднему арифметическому значению, нечувствительна к крайним (резко отличающимся) значениям определений. Поэтому ею можно пользоваться для характеристики небольшой серии определений (лСЮ), при которых наблюдаются резко отличающиеся значения измерений. [c.300]
Определение меди в сульфате меди аммиачным методом ведут по следующей схеме 1) готовят серию стандартных растворов [c.370]
Колориметрическое [определение меди выполняют аммиачным и рода-нидным методами. Аммиачный метод основан, на образовании ионом Си-комплекса [ u(NHa)4]”, окрашенного в интенсивно-синий цвет. Окраска его достаточно устойчива. Поэтому колориметрировать раствор можно любым из рассмотренных способов, в том числе и с помощью стандартных серий. [c.345]
Метод стандартных серий. При этом методе приготовляют не один стандартный раствор, а серию таких растворов с постепенно возрастающими концентрациями определяемого элемента. Например, при определении меди по методу стандартных серий точно отмеривают в ряд одинаковых пробирок постепенно возрастающие количества стандартного раствора СиЗО , действуют на них, для превращения ионов Си++ в более интенсивно окрашенные ио- [c.467]
Серия эталонных растворов. Градуировочный график для фотометрического определения меди вычерчивают по показаниям оптической плотности серии эталонных растворов с содержанием иона Сц2+ 0,005—0,01—0,03—0,04—0,06 мг или более расширенной в области низких концентраций. [c.358]
Быстрое и простое разложение минералов и минеральных продуктов при определении серы основано па прокаливании образца при 1100° С. Окислы серы восстанавливают медью до SO2, определение оканчивают титриметрически [1534]. [c.191]
При анализе технических продуктов, содержащих более 0,01% кислорода, пригодны химические методы. Химические методы определения несложны, но не обеспечивают достаточной точности. Большинство химических методов основано на избирательном растворении металлического бериллия в бром-метаноль ном растворе [800], в растворе едкого кали [801], в растворе сер- нокислой меди в присутствии Hg2 l2 [802] и др. [c.197]
Атомно-а бсорбционную спектрометрию можно использовать для определения следов тяжелых металлов в смазочных маслах. Для проведения анализа 5,000 г пробы отработанного смазочного масла помещают в мерную колбу объемом 25,00 мл, растворяют в 2-метил-4-пентаноне и этим же растворителем доводят объем в колбе до метки. Затем полученный раствор распыляют в воздушно-ацетиленовое пламя. Для определения меди и свинца следует использовать лампы с полым катодом с эмиссионными линиями 324,7 и 283,3 нм соответственно. Для получения калибровочных графиков необходима серия стандартных растворов, содержащих известные количества меди и свинца в соответствующей смеси с неиспользованным смазочным маслом и 2-метил-4-пентаноном. Рассчитайте процентное содержание меди и свинца в 5,000 г пробы отработанного смазочного масла по следующим данным [c.719]
Шах и др. [363] разработали методики нахождения микроэлементов в нефти по коротко- и среднеживущим изотопам. Они применили облучение образцов до интегральной дозы 12-10 н/см в полиэтиленовых ампулах. После двухминутной выдержки (охлаждения) облученных образцов проводили измерение серы, хлора, кальция, ванадия, марганца с использованием р-фильтров из бериллия и свинца. Второе измерение проводили спустя 5—20 ч для обнаружения натрия, калия, меди, галлия, брома уже без применения фильтров р-поглощения. При определении меди вводили нормализирующий фактор от влияния радиоизотопа натрия-24 для энергии 511 кэВ. Статистическая погрешность для кальция, серы, калия-относительная погрешность для кальция и ванадия соответственно 7,2 и 8,8% возникает из-за большой загрузки аппаратуры. Рассмотрены мешающие реакции при нахождении серы, марганца, меди от хлора, железа и цинка соответственно. Они же в [364] продолжили работу по разработке методики анализа по долгоживущим изотопам. Интегральная доза облучения составляла 2,3-10 н/см . После 48 ч охлаждения (в основном для спада активности натрия-24) устанавливали содержание мышьяка и золота. При втором измерении в течение 40 000 с (после 10—12 дней охлаждения) находили хром, железо, кобальт-58 (для никеля), цинк, кобальт, скандий, селен, ртуть, лантан (для урана), сурьму, европий. Учтены спектрометрические погрешности, возникающие от взаимного наложения полезных сигналов селена — ртути, скандия — цинка. Предложенная методика позволяет при двухкратном расходе образцов ( 2 г) определять 23 элемента. Подобный подход к анализу нефти применен в работе [365]. [c.91]
Поток тепловых нейтронов составлял 1,6—2,6-10 н/см -с, быстрых — 2,6—6,5-10 н/см -с. При определении меди-64, ртути-203 введены корректирующие коэффициенты, которые учитывают мешающее влияние радиоизотопов натрия-24, калия-42, лаптапа-140, селена-75. Концентрации натрия, алюминия, серы, хлора, калия, ванадия, хрома, лелеза, кобальта, никеля, меди, мышьяка, селена могут быть установлены с воспроизводимостью менее 10%. Значения концентраций таких элементов, как магний, цинк, молибден, сурьма, барий, ртуть, торий, часто приближаются к пределу их обнаружения. Также было исследовано влияние гомогенности образцов на воспроизводимость результатов. [c.92]
Для анализа топлива на содержание в нем меркаптановой серы определенное количество его вносят в цилиндрическую делительную воронку емкостью 200—250 мл., Затем к топливу добавляют постепенно из бюретки аммиачный раствор сернокислой меди. В начале титрования раствор меди добавляют по 1 мл, затем по 0,5 мл и, наконец, по 3—4 капли. Воронку с топливом каждый раз интенсивно встряхивают до исчезновения голубого окрашивания водного слоя. По накоплении в делительной воронке обесцвеченного водного раствора до 4—5 мл последний сливают. Это необходимо для более четкого определения конца титрования. Голубое окрашивание водного слоя более отчетливо видно на белом фоне (лист белой бумаги). Если делительная [c.284]
Реакция свободной серы с медью и ртутью, наряду с другими методами, используется не только для качественного открытия, но и для количественного ее определения. Аналогичные методы применяются в резиновой промышленности при определении свободной серы в вулканизированном каучуке [294]. Так, Гарнер и Эванс [274] кипятили анализируемые образцы с порошком медной бронзы, образовавшийся сульфид меди окисляли в сульфат и заканчивали определение весовым методом. Диттрих [295] пользовался порошком меди и заканчивал определение колориметрически, после прибавления избытка соли меди. Левин и Стер [296] разлагали сульфид меди, осажденный на сетке, кислотой и выделившийся сероводород определяли иодометрически (сравни [294]). Некоторые авторы [275, 278] рекомендуют пользоваться эталонными шкалами в виде набора медных полосок, предварительно прокорродированных в растворах с известным содержанием серы. [c.32]
Только что рассмотренные методы количественного определения свободной серы с медью и ртутью очень длительны, трудоемки, неизбежно связаны с потерей вещества при фильтровании или в результате частичного окисления сульфидов и выделиЕшегося сероводорода, а поэтому малопригодны для серийных анализов. Неточные результаты получаются и при косвенном определении серы, применяемом в некоторых методах группового анализа. Это обстоятельство заставило Болла ввести дополнительное контрольное определение свободной серы. [c.33]
Производят с одной и той же разведенной слюной три серии определений 1) по вышеизложенному, 2) беря вместо 1 мл дестиллированной воды (п. 5) по 1 мл раствора хлористого натрия и 3) беря вместо 1 мл дестиллированной воды (п. 5) по 1 мл раствора сернокислой меди. [c.76]
Показательные результаты, данные Лингейном, обобщены в табл. 14. Средняя ошибка представляет собой среднее арифметическое отклонение серии определений от количества, взятого для анализа. Следует указать, что ошибка возрастает с увеличением эквивалентного веса осаждаемого вещества она становится почти постоянной, если расчет вести на основании эквивалентов, и составляет 0,01 мэкв. Данным методом можно осадить медь в присутствии висмута, не прибегая к комплексообразующему цианиду. [c.117]
Колориметрическое определение меди. Раствор подкисляют концеитрированной НС по метиловому оранжевому, кипятят до разрушения перекиси водорода и определяют медь с помощью диэтилдитиокарбамината натрия. Для этого раствор переносят в делительную воронку емкостью 50 мл, добавляют 5 мл четыреххлористого углерода, 1 жл 0,1 % -ного раствора диэтилдитиокарбамината натрия и быстро встряхивают в течение 2 мин. Сливают окрашенный слой I4 в пробирку для колориметрирования с притертой пробкой и сравнивают с серией стандартов. [c.355]
Для определения меди можно взять раствор железа, оставшийся в колбе после определения серы (стр. 183), который содержит все железо в виде хлористого. Или же растворяют при нагревании 5—10 г чугуна или стали в 30—50 мл соляной кислоты (плотн. 1,19) в покрытом стакане затем пропускают в горячий, немного разбавленный раствор сероводород до насыщения, вследствие чего осаждаются в виде сернистых металлов медь, а также мышьяк и сурьма. Полученный осадок фильтруют, промывают сероводородной водой, высушивают и озоляют в фарфоровом тигле. Небольшие количества мышьяка и сурьмы при этом полностью улетучиваются. Если особым определением установлено повышенное содержание мышьяка, то осадок предварительно нагревают с разбавленным раствором сернистого натрия сернистый мышьяк и, если [c.176]
СО смесью соды и серы, выщелачивают сплав теплой водой и осажцают олово из раствора тиосолей разбавленной кислотой. Если материал содержит сурьму, надо еще произвести отделение сурьмы от олова. В противном случае можно остброжно обжечь сернистое олово и взвесить-его в виде оловянной кислоты, фильтр с остатком после сплавления присоединяют к азотнокислому фильтрату от нечистой оловянной кислоты и все выпаривают с серной кислотой. Свинец отфильтровывают и взвещивают в виде сернокислого. Фильтрат осаждают сероводородом и производят определение меди и кадмия, как описано выше. Фильтрат [после отделения uS и dS] кипятят для удаления сероводорода, после чего присоединяют его к первому фильтрату от нерастворившихся в разбавленной серной кислоте металлов. [c.585]
Было найдено, что при 400—900° количественно реагируют с однохпористой серой окислы меди, железа, алюминия, магния, сернокислый барий [6], окислы циркония, бора [7], циркония, хрома и титана Выполнялись определения кислорода в сплавах никеля с вольфрамом и молибденом, в стали и металлических хроме и алюминии при содержании кислорода [c.155]
Установление элементного состава органическсго соединения относительно просто, так как в состав пестицидов входит небольшое количество элементов — фосфор, сера, азот, галогены и некоторые металлы — железо, ртуть, цинк, медь. Присутствие этих элементов в определенных комбинациях указывает на тип пестицида. В курсах аналитической химии детально излагается ход работы, в результате которой определяют конкретные элементы. Здесь укажем только на некоторые характерные реакции обнаружения азота, серы, фосфора, меди — элементов, наиболее распространенных в пестицидах. [c.191]
При определении меди можно также пользоваться методом станда ртных серий в этом случае применяют плоскодонные пробирки с притертыми пробками, размером 18 X 150 мм. Подходящую смешанную окраску z Ъ мл 0,001 %-ного раствора дитизона будут давать от 1 до 4 y меди с меньшим объемом раствора дитизона получают более точные результаты и при меньших количествах меди. Так, при употреблении 1 мл раствора дитизона можно определить со значительной точностью несколько десятых долей мик юграмма меди. Если приблизительное количество присутствующей меди неизвестно, добавляют только 0,5—, Q мл раствора дитизона, взбалтывают и затем, если необходимо, добавляют больше, до получения подходящей смешанной окраски. [c.312]
ИзЕлеченйе и определение меди. В делительную воронку емкостью 1,5 л наливают 1 л исследуемого раствора. Устанавливают pH раствора равным 7—9. Контролируют pH раствора по универсальной индикаторной бумаге либо по универсальному индикатору с буферными растворами. Затем. приливают 3 мл 3% раствора диэтилдитиокарбамината натрия и 15 мл ССЦ. Взбалтывают в течение 5 мин. Для того чтобы полнота извлечения была максимальной, взбалтывание нужно проводить энергично. Содержимому воронки дают отстояться и сливают слой четыреххлористого углерода в пробирку для колориметрирования с притертой пробкой. Исследуемый раствор оставляют в воронке для дальнейшего извлечения из него молибдена. Окраску слоя ССЦ сравнивают с серией стандартных растворов I либо определяют светопоглощение на фотоколориметре и находят содержание меди по калибровочной прямой. [c.338]
Разработана мегодика фотометрического и визуального определения меди в почвах и золе растений с применением в качестве реактива раствора диэтилдитиокарбамината свинца. Чувствительность предлагаемого метода при фотометрировании составляет 0,2 мкг меди в 1 мл, а методом стандартных серий — 0,4 мкг меди в 1 мл. Метод проверен на большом количестве образцов почв и золы растений. [c.169]
chem21.info
Диаграмма состояния системы медь – сера (Cu-S) :: Диаграммы сплавов
Несмотря на многочисленные исследования системы Cu-S, она до настоящего времени еще полностью не изучена, так как данные рентгеновских исследований о числе фаз и об их кристаллической структуре не всегда согласуются с имеющимися вариантами диаграммы состояния. Диаграммы состояния, приведенные в справочниках, в дальнейшем неоднократно изменялись и уточнялись. Диаграмма состояния Cu – S построена по совокупности работ. В системе Cu— S кроме соединений Cu2S и CuS существуют соединения Сu, 96S, Cu7S4 и CugS5. Из них соединения Cu2S, Си, 96SИ Cu0S5 обладают несколькими полиморфными модификациями: соединения Cu2S и Сu, 96S триморфны, а соединение Cu9S5 — Диморфно . Соединение Cu2S плавится конгруэнтно при температуре 1130 °С и имеет область гомогенности. Область гомогенности соединения Cu2S уменьшается с температурой, и при 70 °С и содержании 35,65 % (ат.) S соединение Cu9S5 (дигениг), обозначенное на рис. как фаза У, эвтектоидно распадается с образованием фаз 5 (Cuх96S) и 4 (Cu7S4). Фазы (см. рис. 161, 0) 2 (ковеллин) и 3 (“остающийся голубым” ковеллин) являются модификациями соединения CuS, фаза 5 (джарлеит), фаза 6 (гексагональный халькозин) и фаза 7 (халькозин) — модификациями соединения Cu2S.Растворимость S в Cu незначительна.
Источники:
- Диаграммы состояния двойных и многокомпонентных систем на основе железа. Банных О. А., Будберг П.Б., Алисова С. П. и др. Металлургия, 1986 г.
- Двойные и многокомпонентные системы на основе меди. под ред. Шухардина С.В. Наука, 1979 г.
- Диаграммы состояния двойных металлических систем ред. Лякишева Н.П.Машиностроение, 1996-2000 г.
markmet.ru
Меди сульфид (медь серная) – Справочник химика 21
Налейте в пробирку 6 капель концентрированной серной кислоты и внесите немного цинковой пыли, осторожно нагрейте содержимое пробирки (отверстием в сторону от работающих, т. к. возможен выброс реакционной смеси). Какой газ выделяется Подтвердите ваш вывод с помощью полоски фильтровальной бумаги, смоченной раствором сульфата меди(П) (сульфид меди СиЗ — черного цвета). Чем объяснить различие газообразных продуктов восстановления серной кислоты при взаимодействии с медью и цинком [c.52]При обжиге концентратов сульфидов меди, цинка и других цветных металлов на металлургических заводах тоже получается диоксид серы, который используется для производства серной кислоты. Таким образом, производство цветных металлов из сернистых руд комбинируется с производством диоксида серы. До 25% серной кислоты получается из отходящих газов цветной металлургии, Значительная часть сернистых газов в цветной металлургии получается с содержанием ЗО2 менее 37о. Для использования в производстве серной кислоты эти газы необходимо концентрировать. Однако на ряде заводов цветной металлургии концентрирование газов еще не производится и они выпускаются в атмосферу. В настоящее время проектируется более полное использование сернистых газов цветной металлургии. Лучшим сырьем для производства диоксида серы служит сера, которая выплавляется из природных пород, содержащих серу, а также получается как побочный продукт в производстве меди, при очистке газов и т. п. Сера плавится при 113°С, легко воспламеняется и сгорает в простых по устройству печах. При сжигании серы в воздухе получается газ более высокой концентрации, чем при сжигании колчедана, с меньшим содержанием вредных примесей. Из серы вырабатывается около 35% производимой в СССР серной кислоты. [c.117]
Для работы требуется. Штатив с пробирками. — Цилиндр мерный емк. 10 мл. — Чашка фарфоровая. — Палочка стеклянная. — Ацетат аммония. — Карбонат калия. — Сульфид железа. — Сульфид меди. — Сульфид цинка. — Хлорид марганца. — Хлорид натрия. — Фосфат натрия. — Азотная кислота концентрированная.—Серная кислота концентрированная. — Хлорид стронция, насыщенный раствор. — Сульфат кальция, насыщенный раствор. — Хлорид кальция, насыщенный раствор. — Ацетат серебра, насыщенный раствор. — Сульфат стронция, насыщенный раствор. — Нитрат серебра, 20%-ный раствор. — Ацетат натрия, 20%-ный раствор. —Аммиак, 10%-ный раствор. —Серная кислота (1 6). — Едкий натр, 2 н. раствор. — Фосфат натрия, 1 н. раствор. — Соляная кислота, 2 н. раствор. — Хлорид железа (III), 0,5 н. раствор. — Сульфид натрия, 0,5 н. раствор. — Сульфат натрия, 1 н. раствор. — Сульфат цинка, [c.133]
Переработка шламов производится по различным технологическим схемам, учитывающим специфику данного шлама. Обычно вначале шлам обжигают с целью окисления сульфидов. Огарок подвергают выщелачиванию в серной кислоте, при этом в раствор переходят никель, железо, частично медь. Твердый остаток от выщелачивания плавят с восстановителем в электропечах и полученный металлический сплав, содержащий в основном медь и платиноиды, отливают в аноды и подвергают электролизу в растворе серной кислоты. На катоде осаждается губчатая медь, содержащая некоторое количество платиноидов, основная же их масса выпадает в шлам. Губчатую медь растворяют в серной кислоте в присутствии кислорода. Платиновые металлы остаются в остатке от выщелачивания. Этот остаток и шлам электролиза представляют собой концентрат платиновых металлов, содержание которых достигает в нем 50%. Концентрат направляют на разделение и извлечение платиноидов на аффинажный завод. [c.91]
Меди сульфид (медь серная) [c.84]
Одним из методов переработки сложного полиметаллического сырья может служить метод сульфатизации серной кислотой, позволяющий извлекать из руд цветные металлы с высоким коэффициентом извлечения. В связи с этим является необходимым дальнейшее накопление теоретических данных о характере взаимодействия сульфидов меди с серной кислотой. [c.162]
Пг иодид калия (тв) + серная кислота (конц, 5 к) -ь t пар (цвет) и газ газ -I- катион меди (II) (1к, ф/б) окраска (сульфид. меди — осадок черного цвета). [c.136]
Кусковую серную руду с относительно высоким содержанием серы подвергают обработке, минуя стадию флотации. Для получения чистой элементарной серы эти руды и серный концентрат подвергают плавке. Руды, содержащие сульфиды меди, железа, цинка и других металлов, используют в цветной металлургии. При термической обработке этих руд из ни выделяются металлы и образуется сернистый газ, применяемый в производстве серной кислоты. Использование элементарной серы для получения серной кислоты значительно возросло в последние годы. [c.244]
Рассмотрим обжиг серного колчедана в печи КС в производстве серной кислоты [69, 70], учитывая, что такого же типа печи применяются для обжига сульфидов меди, никеля, цинка и т. д. в металлургии цветных металлов. [c.247]
Весьма обстоятельно реакции взаимодействия сульфидов меди (Си 58 и СиВ) с серной кислотой были изучены Роджерсом [ ], но также при температурах до 160—170°. [c.162]
В растворе после отделения осадка содержатся соли меди, железа и цинка и избыток серной кислоты. При пропускании сероводорода через такой раствор выпадает осадок сульфида меди. Сульфиды цинка и железа растворимы в кислоте и из кислого раствора не осаждаются. [c.180]
Сколько граммов меди и серной кислоты можно получить из одной тонны руды, содержащей 2% сульфида меди Допустим, что металлургический процесс позволяет добиться 90%-ного выхода этих двух элементов. [c.452]
Сульфидные руды (серный и медный колчедан, сульфиды цветных металлов) являются комплексным сырьем для получения серной кислоты и меди. В их состав медь входит в виде СиРеЗа, Схх , Си5. Флотацию серного или медного колчедана проводят для отделения сульфидов меди и других цветных металлов (в виде концентратов) от пирита, который входит в состав флотационных хвостов. [c.7]
Железо в виде проволоки или опилок растворяют в 15— 20 %-ной серной кислоте и нагревают, пока остаток железа совершенно не перестанет растворяться. Раствор фильтруют в колбу, добавляют серную кислоту до кислой реакции по конго красному, по охлаждении раствор насыщают сероводородом и, плотно закрыв колбу, оставляют на 2—3 дня. После этого жидкость нагревают на водяной бане и фильтруют от осадка, содержащего углерод, карбиды, сульфиды меди, олова, мышьяка и др. Фильтрат переводят в колбу Вюрца и выпаривают наполовину, пропуская при этом через раствор диоксида углерода, свободный от кислорода, после чего оставляют раствор для кристаллизации в атмосфере СО2. [c.36]
Получение сернистого газа. В лаборатории сернистый газ получается путем окисления (сжигания) свободной серы, восстановления концентрированной серной кислоты металлами (медью) и действием серной кислоты на сульфиты металлов. Сернистый газ образуется также при обжиге -сульфидов. [c.282]
Проф. И. Н. Маслэницким был предложен автоклавный способ обработки анодных шламов электролитического рафинирования никеля Промытый и просеянный шлам подвергают сначала магнитной сепарации для отделения феррита никеля (NiO РёгОз), содержание которого достигает 10%, затем — флотации. В коицентрате содержатся сульфиды меди и никеля, селениды и теллуриды драгоценных металлов и металлические частицы твердого раствора, обогащенного драгоценными металлами. Во флотационные хвосты отходят силикатные компоненты шлама. Полученный концентрат обрабатывают разбавленным раствором серной кислоты (ж т= 10 1) в автоклаве при давлении 15 ат, температуре выше 115° и введении в раствор кислорода. Сульфиды меди и никеля окисляются до сульфатов. Эта схема позволяет получать концентраты с содержанием платиноидов до 80% при небольшом количестве отходов. [c.383]
Ход определения. Предварительная обработка сточной воды. К 100 мл анализируемой воды прибавляют 10—15 мл сульфата меди (для осаждения сульфидов), подкисляют серной кислотой, вводя 3—5 мл ее избытка (если добавление сульфата меди вызвало образование осадка гидроокиси меди, последний при подкислении должен полностью раствориться), и ведут перегонку в приборе, изображенном на рис. 13, до тех пор, пока в перегонной колбе не останется очень небольшой объем (30—40 мл) жидкости. К остатку приливают 100 мл дистиллированной воды и продолжают перегонку, собирая дистиллят в тот же приемник. Для проверки на полноту отгона рекомендуется набрать в пробирку несколько капель выходящей из холодильника жидкости и испытать на присутствие в ней фенолов добавлением диазотированного и-нитро-анилина (см. ниже, разд. 69.2.2). Дистиллят переносят в мерную колбу емкостью 500 мл, разбавляют дистиллированной водой до метки и отбирают аликвотную часть для бромирования. [c.257]
Приборы и реактивы. Микроколба с пробкой и газоотводной трубкой. Микропробирки. Воронка. Фильтровальная бумага. Порошок угля. Сульфид железа. Тальк. Пробирки, заполненные парами брома. Силикагель. Пермутит. Растворы соляной кислоты (1 1), нитрата свинца (0,5 п., 0,01 п.), иодмда калия (0,01 и.), крахмала, нейтрального лакмуса или фукснпа, сульфата меди (0,5 н.), аммиака (25%-ный, 2 и.), гидрокарбоната кальция (0,01 н.), хлорида бария (0,5 н.), серной кислоты (0,5 н.). Хлорная вода. [c.71]
Селен, теллур, сера и кислород находятся в анодах в виде соединений с медью СизЗе, СигТе, СизЗ и СигО. Селенид, теллурид и сульфид меди нерастворимы в разбавленном сульфатном растворе и непосредственно с анода выпадают в шлам. Закись меди СизО частично растворяется в присутствии кислорода воздуха в серной кислоте [c.13]
Навеска сульфида меди замешивалась в фарфоровой лодочке с расчетным количеством (10% избытка против теоретического) концентрированной серной кислоты (уд. в. 1.84) и быстро помещалась в закрытую кварцевую трубку, вставленную в предварительно нагретую до нужной температуры печь. Происходящее в первый момент снижение температуры за счет введения в печь холодной лодочки выравнивалось за 1.5—2 минуты. Обжиг проводился в течение 5, 10, 15, 30 и 60 минут для каждой температуры. Затем лодочка с материалом также быстро вынималась пз печи и погружалась в стакан с холодной водой для прекращения дальнейшего протекания реакции. В этом же стакане проводилось водное выщелачивание сульфатного продукта при комнатной температуре в течение 1 часа. По количеству меди, перешедшей в раствор и оставшейся в остатке, рассчитывалась степень сульфатизации полусернистой меди. [c.162]
При обжиге концентратов сульфидов меди, цинка и других цветных металлов на металлургических заводах тоже получается сернистый газ, который используется также для производства серной кислоты. Таким образом, производство цветных металлов из сернистых руд комбинируется с производством сернистого газа и серной кислоты. Значительная часть сернистых газов получается в цветной металлургии с содержанием ЗОг менее 3%- Для использования в производстве серной кислоты [c.202]
Ход определения. Предварительная обработка сточной воды. К 100 мл анализируемой воды прибавляют 10— 15 мя сульфата меди (для осаждения сульфидов), подкисляют серной кислотой, вводя 3—5 мл ее избытка (если добавление сульфата меди вызвало образование осадка гидроксида меди, послед- [c.371]
Опыт 1. Прибор (см. рис. 74) для восстановления сульфида меди водородом. Серная кислота, 1 10. Перманганат калия, раствор. Цинк. Фильтровальная бумага, пропитанная ацетатом свинца. [c.173]
Сульфид меди, СпгЗ, встречается в природе в виде минерала халькозина в лаборатории может быть получен прямым взаимодействием э.лементов при сильном нагревании, растиранием смеси серного цвета с восстановленной медью, прокаливанием окислов, оксисульфидов, сульфидов и некоторых солей меди(П) с серой в атмосфере водорода (и.ли инертного газа), действием сероводорода на металлическую медь, взаимодействием многих сульфидов металлов (или паров сероуглерода) с метал.лической медью, восстановлением сульфида меди(П) спиртом, арсенитом натрия, [c.699]
Для разделения молибдена и меди сначала их осаждают сероводородом, осадок сульфидов обрабатывают 20 мл 10%-ного раствора NaOH несколько минут при нагревании. Сульфид молибдена растворяется, а сульфид меди остается без изменения и отфильтровывается (1529]. Осадок промывают горячей водой. Для определения молибдена к фильтрату прибавляют 5 мл раствора сульфида аммония, нагревают до кипения, подкисляют разбавленной (1 1) серной кислотой. Полученный [c.114]
Пользуясь величинами произведений растворимости (см. Приложение, табл. 10), объяснить, почему сульфид двухвалентного марганиа растворяется в разбавленной серной кислоте, я сульфид меди — нет. [c.92]
Тритионаты определяют после взаимодействия их с сульфатом меди. Образующийся сульфид меди взвешивают, а серную кислоту определяют титрованием щелочью или в виде BaSO . [c.104]
Содержание меди в земной коре достаточно высокое 10″ %, серебро и особенно золото — редкие драгоценные металлы с кларками 10 и 0,5 10 %. Содержание меди в полиметаллических рудах обычно не превышает 12%. Основные примеси — железо, силикаты и сульфиды. Извлекают медь обычно пирометаллургическим способом. Поскольку технология получения меди типична для многих цветных металлов, остановимся на ней подробнее. Вначале руду обогащают флотационным методом. Затем концентрат с добавкой кислого флюса, состоящего в основном из кварцевого песка ЗЮг, плавят в отражательной или электрической печи в окислительной атмосфере, создаваемой избытком кислорода в горящей смеси газа, мазута или угольной пыли и воздуха. Основные примеси, главным образом пирит ГеЗг, легче окисляются, чем халькозин и ковеллин СпгЗ и СиЗ. В результате железо в виде силиката Ре23104 переходит в шлак, основная масса ЗОг утилизируется в производстве серной кислоты, а металлизированный сульфид меди, содержащий 15-50% меди, 15-25% серы и железо, образуют в печи нижний слой, называемый штейном. [c.175]
Пириты. Серный колчедан (пирит) применяется в прозвод-стве серной кислоты с 1835 года. Пирит оценивается по содержанию в нем серы чистый пирит (РеЗг) состоит из 53,5% 5 и 46,5% Ре. Природные пириты содержат от долей процента до нескольких процентов примесей-сульфидов меди, свинца, цинка, никеля, мышьяка, соединений селена, теллура и др., окислов кремния, алюминия, кальция, магния и некоторые соли (сульфаты и др.) в состав пиритов входят также золото и серебро в количествах от нескольких граммов до десятков граммов на тонну. [c.116]
В опытах, проведенных Н. В. Knowles, достигалось полное отделение 0,1 г меди от 0,1 г цинка в следующих условиях 1) сульфаты обоих металлов были растворены в серной кислоте, концентрация которой была в пределах от 2 до 18 п. 2) температура растворов была от 25 до 100 С 3) пропускание сероводорода через растворы продолжалось 60 мин 4) фильтрование проводили немедленно после осаждения сульфида меди и осадки промывали насыщенными сероводородом горячими растворами серной кислоты той же концентрации, в какой проводили осаждение. [c.479]
Крахмал, глицерин, смесь бензина и бензола (9 1), смесь бензина, бензола и метилового спирта (25 мл смеси бензина с бензолом 9 1 и 8 мл метилового спирта), хроматографическая окись а.люминия, алюминий (пластинки, стружка, проволока), борная кислота, бура соли железа (1П), кобальта, никеля, марганца, хрома и меди, серная кислота концентрированная и 2 н., соляная кислота концентрированная, 5 н. и 2 н. растворы едкого натра 30% и 2 н.. соды 2 н., хлорида ртути (II) 2 и., сульфата меди, алюминия и кобальта 2 н., свеже- приготовленный раствор сульфида аммония, раствор метилового фиолетового 0,01%, лак , усовая бумага. [c.145]
Отделение меди тиосульфатом натрия. Раствор, полученный после выпаривания пробы с серной и азотной кислотами с целью разрушения комплексных соединений меди с цианид-, роданид- и т. п. ионами, разбавляют водой так, чтобы содержание свободной серной кислоты было примерно равно 3—4% по объему, доводят раствор до кипения и прибавляют к нему небольшими порциями также нагретый до кипения 10%-ный раствор тиосульфата натрия. Сначала происходит восстановление железа(III) до желе-за(П) исчезновение желтой окраски железа(III) покажет завершение этого процесса. Продолжают добавление раствора тиосульфата, вводя его в избытке 5—6 мл, кипятят до полной коагуляции черного осадка сульфида меди СпгЗ и добавляют еще 2—3 мл раствора тиосульфата. Выпадение при этом белого осадка указывает на полноту осаждения меди, а при выпадении черного осадка добавляют еще 2—3 мл раствора тиосульфата и продолжают кипячение до полной коагуляции осадка. Фильтруют через быстро фильтрующий фильтр и промывают осадок несколько раз горячей водой, слегка подкисленной серной кислотой. [c.157]
В заключение обзора аналитичеокой характеристики рения укажем еще на работу С. М. Баситовой по извлечению рения из различных горных пород [108]. С целью концентрирования ренийсодержащих растворов, подвергаемых анализу, автор этой работы рекомендует проводить сплавление с едким натром нескольких навесок породы сплавы выщелачивают водой п фильтраты подкисляют серной кислотой, причем кремневая кислота удерживается в растворе. Пропускают сероводород, добавляя некоторое количество солей меди выпадающий сульфид Меди количественно увлекает весь присутствующий в растворе рений. [c.45]
Для разложения германита применяется также обработка измельченного концентрата 50%-ным раствором щелочи в расчете на образование растворимых полисульфидов. После выпаривания досуха выщелачивают полисульфиды горячей водой, отделяя их таким образом от нерастворимых сульфидов меди, свинца и т. д. (нерастворимый осадок от выщелачивания поступает на переработку для извлечения остатков германия). Часть щелочного раствора—около 5% от общего объема — обрабатывают азотной кислотой, а остальной раствор нейтрализуют серной кислотой до pH = 8. Оба раствора доводят до кипения и смешивают. Концентрация азотной кислоты должна быть рассчитан>э так, чтобы содержание ее в получающемся смешанном растворе составляла 5%. При этом азотная кислота окисляет сульфид гергугания, переводя его в раствор (при нейтрализации щелочного раствора полисульфиды разрушаются с выделением сульфидов). Сульфид мышьяка также частично окисляется до мышьяковой кислоты. Неокислившийся мышьяк (в виде сульфида) отфильтровывают и направляют на соответствующую переработку, а кислый раствор, содержащий германий и мышьяковую [c.221]
Аппаратура, материалы и реактивы. Аппарат Киппа для получения сероводорода, прибор по рис. 32. Индикаторы растворы лакмоида, метилового красного и фенолфталеина. Серная кислота концентрированная и 2 н., азотная кислота концентрированная. Двухнормальные растворы соляной кислоты, едкого натра, хлорида натрия, сульфида натрия, карбоната натрия, ацетата натрия, ацетата аммония, хлорида кальция, хлорида бария, хлорида цинка, хлорида алюминия, хлорида меди, сульфата меди, хлорида сурьмы (Н1), сульфата железа (П), сульфата железа (П1). Раствор сульфида аммония. [c.70]
Шайкинд С, П. и Сигал Ф. С. Разделение сульфидов кадмия и меди серной кислотой при определении кадмия методом внутреннего электролиза. Тр, Ленингр. технол. ии-та им. Ленсовета, 1950, вып. 17, с. 53—62. Библ. 8 назв. 6210 [c.236]
Выделение и очистка меди. В фильтрат после отделения бензоиноксимата молибдена пропускали ток сероводорода. Сульфид меди отделяли фильтрованием, промывали 0,3 н. соляной кислотой, насыщенной сероводородом, и растворяли при нагревании в концентрированной азотной кислоте. Раствор упаривали до объема 0,5 мл, прибавляли воду до объема 120 мл, затем добавляли по 1 мл концентрированной серной и азотной кислот. Из раствора, нагретого до 70—75°, медь осаждали электролитически на сетчатом платиновом электроде при силе тока 0,5—0,75 а и ршпряжении 2,2 в. Выделившуюся и промытую водой металлическую медь растворяли в азотной кислоте. Раствор упаривали до объема 0,5 мл, разбавляли водой до 8—10 мл и прибавляли 5 мг сульфата цинка. Раствор нейтрализовали аммиаком до появления синей окраски аммиачного комплекса меди, а затем добавляли соляную кислоту до слабокислой реакции. Прибавлением спирто1вого раствора рубеановодородной кислоты осаждали рубеанат меди. Осадок центрифугировали, промывали водой, растворяли в азотной кислоте, разрушали упариванием рубеанат-ион и вновь проводили электролиз. Металлическую медь растворяли в азотной кислоте и раствор трехкратно упаривали, добавляя концентрированную соляную кислоту для удаления нитрат-иона. [c.66]
chem21.info
Сероводород взаимодействие с медью – Справочник химика 21
Коррозионная активность сернистых соединений зависит от их строения. Наиболее агрессивны сероводород, сера и меркаптаны. Сероводород корродирует цинк, железо, медь, латунь и алюминий. Сера, если она имеется в свободном состоянии в топливе, почти мгновенно взаимодействует с медью и ее сплавами, образуя сульфиды, вследствие чего наряду с коррозией металла, приводящей к потере его массы, наблюдается образование отложений на металле. Коррозия металлов меркаптанами определяется их концентрацией в топливе и строением. Ароматические меркаптаны более коррозионно-агрессивны, чем алифатические, при этом бициклические меркаптаны агрессивнее моноциклических. [c.104]Образующиеся в условиях переработки сернистых нефтей при высоких температурах крекинг-процесса сернистые соединения, элементарная сера, меркаптаны и др. являются весьма коррозионно-активными веществами. Основным агентом высокотемпературной коррозии является сероводород. Сернистый газ при высоких температурах менее опасен, чем сероводород. Сухой сероводород при комнатной температуре также ие представляет опасности д, я обычных углеродистых сталей даже в присутствии кислорода, по ои способен взаимодействовать с медью согласно следующей реакции [c.154]
При взаимодействии раствора сульфата меди (II) с сероводородом образуется осадок сульфида меди (II) [c.64]
Коррозия металлов в неэлектролитах является разновидностью химической коррозии. Органические жидкости не обладающие электропроводностью, исключают возможность протекания электрохимических реакций. К неэлектролитам относятся органические растворители бензол, толуол, четыреххлористый углерод, жидкое топливо (мазут, керосин и бензин) и некоторые неорганические вещества, такие, как бром, расплав серы и жидкий фтористый водород. В этих средах коррозию вызывает химическая реакция между металлом и коррозионной средой. Наибольщее практическое значение имеет коррозия металлов в нефти и ее производных. Коррозионно-актив-ными составляющими нефти являются сера, сероводород, сероуглерод, тиофены, меркаптаны и др. Сероводород образует сульфиды с железом, свинцом, медью, а также со сплавами свинца и меди. При взаимодействии меркаптанов с никелем, серебром, медью, свинцом и со сплавами меди и свинца получаются металлические производные меркаптанов — меркапти-ды. Сера реагирует с медью, ртутью и серебром с образованием сульфидов. [c.15]
К химической коррозии также относится коррозия в среде неэлектролитов. Органические жидкости, не обладающие электропроводимостью, исключают возможность протекания электрохимических реакций. К таким жидкостям относятся органические растворители (бензол, толуол, тетрахлорид углерода), жидкое топливо (мазут, бензин, керосин) и некоторые неорганические вещества (бром, расплав серы, жидкий фто-роводород). В этих средах коррозию вызывает реакция между металлом и коррозионной средой. Наибольшее практическое значение имеет коррозия металлов в нефти и нефтепродуктах. Коррозионноактивными составляющими нефти являются сера, сероводород, сероуглерод, тиофены, тиолы и т. п. Сероводород образует сульфиды с железом, свинцом, медью и их сплавами. При взаимодействии меркаптанов с никелем, серебром, медью и свинцом получаются производные тиолов — тиолаты. Сера взаимодействует с медью и серебром с образованием сульфидов. Повышение температуры ускоряет коррозию металлов в нефти наличие воды в нефти резко ускоряет процесс, вызывая электрохимическую коррозию. [c.52]
Медь подвергается сильной коррозии и при действии газовых сред — хлор, бром, йод, пары серы, сероводород, углекислота разрушают медь. В особенности интенсивная коррозия меди имеет место при действии на нее водорода при высоких температурах. Этот вид разрушения известен под названием водородной болезни . Технические марки меди всегда загрязнены примесью закиси меди, которая при взаимодействии с водородом восстанавливается до металлической с образованием паров воды. Образующиеся при указанной реакции пары воды стремятся выделиться и нарушают связь между отдельными кристаллитами металла, вследствие чего медь становится хрупкой, дает трещины и не выдерживает динамических нагрузок. С повышением температуры водородная хрупкость меди увеличивается (рис. 174). [c.249]
Примеси в СОз сернистого газа й сероводорода увеличивают скорость окисления никеля. Имеются сведении об охрупчивании меди при температуре выше 600 С. Прн высоких температурах молибден, ниобий и некоторые другие металлы энергично взаимодействуют с углекислым газом. Скорость коррозии углеродистых сталей в воде, насыщенной СОа. резко увеличивается. [c.847]
При получении в лаборатории водорода взаимодействием технического цинка с разбавленной серной кислотой основными газообразными примесями будут арсин, сероводород и диоксид серы. Предложите способы очистки водорода от этих примесей. Почему активность цинка в этой реакции увеличивается, если предварительно на нем осадить немного меди [c.125]
Имеется следующий набор веществ гидроксид калия, алюминий, серная кислота, вода, диоксид углерода, оксид меди (И), сероводород. Руководствуясь справочником, установите, какие соли можно получить при взаимодействии веществ из данного набора. [c.10]
Серная кислота широко применяется в химических лабораториях и в химическом производстве. Нужно показать учащимся все виды серной кислоты, применяющиеся в промышленности моногидрат, купоросное масло, олеум — и рассказать о правилах обращения с этими продуктами. Для изучения свойств серной кислоты нужно взять концентрированную кислоту (квалификации ч. или ч. д. а.). Прежде всего нужно показать учащимся, как правильно разбавлять серную кислоту водой приливать серную кислоту к воде, а не наоборот. Концентрированная серная кислота жадно поглощает воду, она способна отнимать элементы воды у органических соединений, это можно наблюдать на примере обугливания лучины, погруженной в серную кислоту. Серная кислота — окислитель она окисляет уголь до углекислого газа (уравнение реакции ). Большинство металлов растворяется в концентрированной серной кислоте, при этом сама кислота восстанавливается до сернистого газа, серы или сероводорода (в зависимости от природы металла и условий реакции). Это можно показать на примерах взаимодействия серной кислоты с медью, цинком, железом. Концентрированная серная кислота не действует на железо это позволяет вести химические процессы с участием концентрированной серной кислоты в аппаратах из обычной стали. Разбавленная кислота взаимодействует с железом, образуя сернокислое железо (уравнение реакции ). [c.65]
Несмотря на то, что в ходе реакции получается кислота, uS выпадает в осадок сульфид меди не растворяется ни в воде, ни в разбавленных кислотах. Но при действии сероводорода на раствор какой-либо соли железа (П) осадка не получается — сульфид железа (II) FeS нерастворим в воде, но растворяется в кислотах. Это различие обусловлено тем, что произведение растворимости uS много меньше произведения растворимости FeS. О взаимодействии сульфидов металлов с кислотами более подробно говорится в разделе 8.11. [c.460]
До сих пор рассматривалось образование, устойчивость и разрушение защитных оксидных пленок, возникающих на металле при химическом взаимодействии его с кислородом. Но помимо кислорода ряд других газов может обладать сильными агрессивными свойствами по отношению к металлам при повышенных температурах. Наиболее активными газами являются фтор, диоксид серы, хлор, сероводород. Их агрессивность по отношению к различным металлам, а следовательно, и скорость коррозий последних не одинакова. Так, например, алюминий и его сплавы, хром и стали с высоким содержанием хрома устойчивы в атмосфере, содержащей в качестве основного агрессивного агента кислород, но становятся совершенно неустойчивыми, если в атмосфере присутствует хлор. Никель неустойчив в атмосфере диоксида серы, а медь вполне устойчива. Коррозия низколегированных и углеродистых сталей в выхлопных газах двигателей внутреннего сгорания, в топочных и печных газах сильно зависит от соотношения СО и Ог. Повышение содержания Ог увеличивает скорость газовой коррозии и, наоборот, повышение содержания СО ослабляет коррозию. Ряд металлов (Со, N1, Си, РЬ, С(1, Т1) устойчив в атмосфере чистого водяного пара при температуре выше температуры кипения воды. [c.211]
Разделение ионов в виде сульфидов. Сульфиды очень многих металлов труднорастворимы в воде. Эти свойства были использованы для разработки схемы систематического хода анализа катионов, которая была предложена более 100 лет назад известным русским химиком К. К- Клаусом, открывшим рутений. Эту схему называют сероводородный метод разделения и анализа ионов , она сохранилась с некоторыми изменениями и до настоящего времени. В табл. 26.8 представлены продукты взаимодействия катионов с сероводородом в кислой среде и с сульфидом аммония в аммиачной среде. Из этой таблицы видно, что в среде хлороводородной кислоты сероводород осаждает черные сульфиды серебра, ртути, свинца, меди, висмута, желтые сульфиды кадмия, мышьяка(И1) и (V), олова(1У), оранжево-красные сульфиды сурьмы(III) и (V) и коричневый сульфид олова (II). [c.557]
Концентрированная серная кислота взаимодействует почти со всеми металлами независимо от их положения в ряду стандартных электродных потенциалов, но водород при этом не выделяется. Продукт, до которого восстанавливается кислота, зависит от восстановительной активности металла. Например, концентрированная серная кислота, взаимодействуя с медью, восстанавливается до оксида серы (IV), с цинком — до свободной серы и с кальцием — до сероводорода. Степень окисления серы может изменяться от -)-6 до —2, например [c.260]
Почему действие сероводорода на раствор [ u(NHз)4]504 вызывает образования осадка Си5 несмотря на малую концентрацию в растворе ионов меди Написать уравнение реакции взаимодействия. [c.193]
Реакция (5 19) проходит при нагревании смеси реагентов в отсутствие растворителя Свободные лиганды можно получить взаимодействием комплексов меди с сероводородом [c.89]
Кинетика и механизм адсорбции. Количественные исследования кинетики адсорбции сероводорода на поверхностях макрокристаллов [25, 26] показали, что для платины и меди существуют два адсорбционных режима. При степени покрытия монослоя ниже 0,5—0,6 идет быстрая адсорбция с высоким коэффициентом конденсации. При больших степенях покрытия адсорбционный процесс значительно замедляется и наблюдается низкий коэффициент конденсации. Природа явления еще не объяснена, но из этих наблюдений ясно, что адсорбция сероводорода на поверхности металла воздействует на его поведение сильнее, чем можно ожидать, исходя из простого взаимодействия одного атома серы с одним атомом металла на поверхности. Одним из возможных объяснений может быть реконструкция поверхности, обсуждаемая ранее. [c.66]
Основным агентом высокотемпературной коррозии является сероводород. Сернистый газ при высоких температурах менее опасен. Сухой сероводород при обычной температуре не представляет опасности для обычных углеродистых сталей даже в присутствии кислорода, но он способен взаимодействовать с медью по следующей реакции [c.18]
Серу- и фосфорсодержащие присадки. Эти присадки эффективны в широком диапазоне режимов работы. Санин с сотрудниками [22, с. 207] методом радиоактивных индикаторов исследовали механизм действия трибутилтритиофосфита на медь (в виде тонких пластинок) в среде углеводородов. Оказалось, что при повышенной температуре трибутилтритиофосфит разлагается с выделением фосфина и меркаптана, последний взаимодействует с медью и превращается в меркаптид меди (С2Н95)2Си, который при повышенной температуре также может разлагаться на сульфид меди, бутилен и сероводород. Фосфин же реагирует с медью, образуя фосфид меди. Пленки фосфидов, меркаптидов и сульфидов меди оказывают защитное действие на металл. [c.138]
Отложения и осадки могут образовываться и при использовании свежих топлив, когда в них присутствуют реакционноспособные меркаптаны или — в исключительных случаях — элементарная сера и сероводород. Эти осадки имеют чисто коррозионное происхождение и состоят главным образом из продуктов взаимодействия коррозионного агента с металлом деталей топливной системы. Так, в осадке, отложившемся в двигателе из топлива, содержащего элементарную серу, 16% серы, зольность его 88%, количество меди в золе 47,5%. [c.108]
В атмосфере водорода и сероводорода при 600—1000 “С радиоактивная сера 8 взаимодействовала с медью двояко происходила хемосорбция серы на поверхности металла и наблюдалось растворение серы в решетке меди. При 830 X и общем давлении газовой смеси 100 мм рт. ст. в результате хемосорбции один атом серы приходился на два атома меди [39]. [c.47]
Методы определения. Определение Э. в воздухе основано на получении красного окрашивания Э. при взаимодействии с нитратом меди чувствительность метода 3 мкг в анализируемом объеме определению мешает сероводород [2]. [c.71]
Поверхность золотых и позолоченных изделий со временем темнеет. Это результат взаимодействия меди и серебра с сероводородом, кислородом, углекислым газом и влагой воздуха жилого помещения. При этом медь образует соединения черного или зеленого цвета, а серебро — черный сульфид серебра АддЗ. [c.109]
Сульфиды, как уже указано, легко образуются при непосредственном взаимодействии металлов с серой, а также в результате обменных реакции между солями этих металлов н растворимыми сульфидами, в том числе и сероводородом. Сульфиды цинка ZnS— белого, кадмия dS — желтого и ртути HgS — красного и черного цвета в поде нерастворимы. Кристаллический сульфид цинка, содержащий небольшие количества активаторов (медь, марганец, таллий), способен после освещения длительно светиться. [c.332]
Этой реакции способствуют окиси, гидроокиси, алкоголяты и меркаптиды щелочных металлов, а также соли цинка и меди. Так, например, фенилвинилсульфид получают при взаимодействии тиофенола и смеси ацетилена с азотом в присутствии КОН при 15 ат и 160°. А. Е. Чичибабин и О. С. Багдасарьянц 180] нашли, что из ацетилена с HjS над Al. Og образуется почти чистый тиофен. До 50% последнего можно получить пропусканием такой же смесп над пиритом при 300°. Сероводород или меркаптаны реагируют также с моно- или дивинилацетиленом при нагревании в автоклаве со щелочью. Из Я ТИокрезола и винилацетилена получен, в числе других продуктов, бутин-1-ил-4-л-толилсульфид [c.745]
Согласно уравнению (5), для полного осаждения меди из раствора сульфата меди сероводородом при взаимодействии 0,6 моля h3S расходуется 0,6 моля (96 г) ( uSOi). [c.95]
Решение. Медный купорос — это пентагидрат сульфата меди (II) uSO -SHgO. Сульфат меди при взаимодействии с сероводородом образует нерастворимый сульфид меди (II) [c.107]
Медь и ее сплавы при нагревании взаимодействуют с кислородом, парами серы, сернистым ангидридом, сероводородом и фосфором, но стойки против действия азота, водяного пара, окиси и дву-окисй углерода и восстановительных газов в случае отсутствия закиси меди (водородная хрупкость) или переменных окислительно-восстановительных условий. [c.272]
Хемосорбенты на основе меди схожи по свойствам с цинкоксидными, но отличаются более высокой скоростью взаимодействия с сероводородом. В присутствии водорода в очищаемом газе оксид меди восстанавливается до металла, который с h3S образует сульфид. [c.18]
Формазаны сахаров являются ярко окрашенными соединениями с характерными УФ-спектрами При взаимодействии формазанов с сероводородом интенсивная окраска исчезает и образуется фенилгидр-азил тиоальдоновой кислоты, который при нагревании с сульфатом меди легко превращается в альдоновую кислоту [c.120]
В качестве реагентов можно использовать только соединения, быстро взаимодействующие с определяемым компонентом и селективно образующие с ним ярко окрашенные продукты реакции, отличающиеся по цвету от индикаторного порошка. Избирательность часто повышают, используя вспомогательные окислительные, осушительные или фильтрующие трубки а также трубки с наполнителями для улавливания мешающих определению компонентов. В качестве примеров наполнителей можно привести шамот, обработанный сульфатом меди (взаимодействует с аммиаком и сероводородом, но пропускает фосфин) шамот с нитратом серебра и сульфатом ртуги(1) (можно определять бензин в присутствии не-предельшлх углеводородов алифатического ряда и ароматических углеводородов) стеклянный порошок с барбитуровой кислотой (взаимодействует с аммиаком, но пропускает ароматические амины) стеклянный порошок, обработанный ацетатом аммония (поглощает формальдегид, пропускает акролеин) (табл. 11.18-11.20). [c.243]
Из сульфатных растворов цинка и меди таким же способом были получены моносульфиды металлов состава, близкого к составам стехиометри-ческих формул МеЗ (65.73% гп и 32.35%8 для 2п8 и 64.33% Си п 31.76% 8 для СиЗ). Более значительные отклонения состава полученных сульфидов, от теоретического, очевидно, обусловлены большей степенью окисления их вследствие более развитой поверхности. Сульфид цинка представлял мелкий норошок белого, слегка желтоватого цвета с отдельными точками блесток. Кристаллический характер ХпЗ был выражен значительно менее, чем у сульфида никеля. Характерным отличием от других сульфидов было наличие запаха сероводорода, выделяюш е-гося, по-видимому, в результате реакции взаимодействия с парами воды воздуха [c.95]
При протягивании исследуемого воздуха через индикаторную трубку с силикагелем, пропитанным меднобензидиновым реактивом, на индикаторном порошке образуется окрашенный слой. Механизм реакций заключается в том, что цианистый водород, взаимодействуя с ацетатом меди, выделяет атомарный кислород, последний окисляет бензидин с образованием бензидиновой сини. Чувствительность метода 0,001 мг л при отборе 180 мл воздуха. Определению мешают окислители, которые дают такую же реакцию, а также соляная кислота, сероводород, сернистый ангидрид. [c.130]
Свободная сера сообш ает топливам сильные коррозионные свойства, особенно по отношению к меди. С помош ью радиоактивных изотопов установлено, что при контакте с металлами сера проникает глубоко в их толщу вследствие химического взаимодействия, а не только образует пленку химических веществ на поверхности металла [71, 81]. Сероводород — тоже коррозионно-агрессивный агент, поражающий как цветные, так и черные металлы. К тому же он сильно токсичен. [c.30]
Известно получение различных 1,2-диарилэтиленов разложением политиоароматических альдегидов. Так, тритиобензальдегид, обра-зуюш ийся при взаимодействии бензальдегида с сероводородом, в присутствии нагретого до 230 °С порошка меди превращается в стиль-бен. При той же температуре из политионафтальдегида получен [c.35]
С сероводородом [11] и меркаптанами [12], образуя тио-мочевину или замещенную изотиомочевину, и в присутствии кислот взаимодействует со спиртами [13], давая, замещенные изомочевины. С формальдегидом [14] цианамид дает метилольные соединения, с аминами [15]-— замещенные гуанидины. Цианамид ацилируется ацили-рующими средствами [10, 16] и алкилируется алкили-рующими [10]. При сплавлении с едким кали [17] образует цианат калия при обработке солями гидразина [18] дает соли аминогуанидина. Цианамид токсичен (действие на кожные покровы), легко действует на железо, сталь, медь, свинец и в слабой степени — на дюрИрОн. Наиболее устойчивы к воздействию цианамида стеклянные и змалированные сосуды. [c.43]
chem21.info