Полимерные материалы что это – Полимерные материалы что это

alexxlab | 19.06.2020 | 0 | Вопросы и ответы

Полимерные материалы – это… Что такое Полимерные материалы?

материалы на основе высокомолекулярных соединений — веществ, состоящих из однотипных групп атомов, соединенных химическими связями. Основную массу высокомолекулярных соединений получают либо методами химического синтеза из мономеров — продуктов переработки природного сырья (нефти, газа, угля и др.), либо путем переработки природных полимеров (например, целлюлозы, лигнина). В состав П. м. могут входить наполнители, красители, пластификаторы, стабилизаторы и другие добавки, регулирующие функциональные и технологические их свойства. При изготовлении изделий компоненты, входящие в состав П. м., тщательно гомогенизируют до получения однородной пластмассы, из которой прессованием, литьем под давлением, экструзией (формированием изделий путем выдавливания П. м. через профилирующий инструмент), вальцеванием или другим технологическим методом получают готовое изделие или материал, используемый для дальнейшей переработки.

Для медицинских целей используют П. м. общетехнического назначения, а также специальное П. м. медицинского назначения (
рис.
). Из первых изготавливают строительное и санитарно-техническое оборудование лечебных учреждений, белье, посуду, предметы ухода за пациентами, детали различных приборов, исследовательской и лечебной аппаратуры, инструментов, посуды для аналитических лабораторий и др. Применение П. м. вместо традиционных материалов (металлов, стекла) обусловлено их лучшими технологическими свойствами, комплексом физико-механических характеристик, возможностью переработки в изделия массового выпуска и однократного применения. Помимо общетехнических к этим полимерным материалам предъявляются дополнительные санитарно-гигиенические требования — минимальное выделение в окружающую среду газообразных продуктов, не превышающее ПДК; нерастворимость в моющих растворах; возможность стерилизации дезинфицирующими растворами, газами, УФ-облучением, гамма-излучением и др. Наиболее широко применяются П.
м. на основе поливинилхлорида. сополимеров стирола, полипропилена, полиметилметакрилата, полиуретанов, фенол-, мочевино-меламино-формальдегидных смол. Из них выпускают изделия различного назначения, а также плиты, листы, пленки, трубы, тканые и нетканые материалы на основе волокон, пасты, герметики, лаки, клеи. Специальные П. м. медицинского назначения предназначены для непосредственного контакта с живым организмом — в эндопротезах и материалах для восстановительной хирургии, в материалах и изделиях для службы крови, в виде инструментов для внутриорганных исследований, аппаратуры, заменяющей функции сдельных органов, компонентов терапевтических и диагностических средств. Основу таких П. м составляют синтетические и природные высокомолекулярные соединения, не оказывающие на живой организм вредного воздействия. По характеру взаимовлияния с организмом П. м. разделяют на биоинертные, биосовместимые и биоактивные. Биоинертные П. м. (полиэтилен, полипропилен, фторопласт, силиконы, полиметилметакрилат и др.) практически не изменяют своих свойств под влиянием сред живого организма. В виде готовых изделий или материалов их используют для создания искусственных сосудов (полиэтилентерефталат, полипропилен, фторопласт), клапанов сердца (силикон, фторопласт, полипропилен, полиэтилентерефталат), хрусталиков глаз (полиметилметакрилат), частей эндопротезов суставов (полиамиды, фторопласт), в качестве искусственных сухожилий, мышечных связок (полипропилен, полиэтилентерефталат), деталей аппаратов искусственная почка, искусственное сердце — легкое (полиэтилен, полипропилен, полиакрилаты, силиконы, эфиры целлюлозы) и др.

Биосовместимые П. м. способны постепенно подвергаться биодеструкции или растворению в биологических средах, что позволяет наиболее благоприятно осуществлять восстановительные хирургические операции, используя регенераторные функции организма. Материалы сополимеров винилпирролидона, акриламида, акрилатов, полиамидов, полигликолидов и др. в виде комбинированных протезов, сеток, пленок, листовых материалов, пеноматериалов, клеящих композиций, рассасывающихся шовных материалов применяют для временного замещения тканей при резекциях, укрепления стенок полых органов, закрытия раневых поверхностей внутренних органов, заполнения послеоперационных полостей, соединения резецированных тканей. В травматологии биосовместимые П. м. из сополимеров винилпирролидона и метилметакрилата, цианакрилатов применяют для замещения дефектов костной ткани, в виде различных соединительных элементов, для склеивания костных отломков и др. В сердечнососудистой хирургии аналогичные П. м. из сополимеров винилпирролидона и бутилметакрилата используют при протезировании сосудов, укреплении сердечной стенки, герметизации анастомозов.

Биоактивные П. м. могут обладать направленной физиологической активностью благодаря лекарственным препаратам, содержащимся в них в виде компонента. Применяют готовые лекарственные формы в виде композиций, где высокомолекулярные соединения либо играют роль основы-носителя (глазные лекарственные пленки с различными препаратами — сульфапиридазином, пилокарпином, канамицином и др., тринитролонг, динитросорбилонг), либо обладают собственной физиологической активностью макромолекул — полимерные лекарства, антитромбогенные П. м., искусственные плазмо- и кровезаменители, энтеро- и гемосорбенты (гемодез, полидез, аминопептид, полиглюкин и др.). Для биосовместимых и биоактивных П. м. используют высокомолекулярные соединения на основе N-винилпирролидона, акриламида, некоторых акрилатов, гликолида, лактидов, N-окисей. производных целлюлозы, коллагена и др.
Библиогр.:
Лосев И.П. и Тростянская Е.Б Химия синтетических полимеров. М., 1971, библиогр., Полимеры в медицине, под ред. Н.А. Платэ, пер. с англ., М., 1969, библиогр., Полимеры медицинского назначения, под ред. Сэноо Манабу, пер. с японск., М., 1981, библиогр.
протезы трахеи”>

Рис. б). Изделия медицинского назначения из полимерных материалов: протезы трахеи.

Рис. а). Изделия медицинского назначения из полимерных материалов: упаковка для таблетированных лекарственных средств.

Рис. в). Изделия медицинского назначения из полимерных материалов: глазные лекарственные пленки в пеналах-дозаторах.

Рис. г). Изделия медицинского назначения из полимерных материалов: штифты для соединения отломков трубчатых костей.

dic.academic.ru

Полимерные материалы

 Полимерные материалы – это неорганические или органические вещества на основе высокомолекулярных соединений состоящих из групп атомов, которые соединены между собой в длинные макромолекулы химическими связями. Иначе говоря, молекула полимера, состоит из многократно повторяющихся групп атомов – цепей.

В большинстве случаев полимеры обладают значительной молекулярной массой и характеризуются, как высокомолекулярные соединения, количество звеньев в которых должно быть достаточно велико. Чем больше количество мономерных звеньев в полимере , тем выше степень полимеризации.

Принадлежит какая либо молекула к полимерам или нет, можно проверить, добавив к ней очередное мономерное звено, свойства молекулы должны остаться такими же, как и перед добавлением звена. Молекулярная масса полимеров так же довольно высока, она находится в пределах от нескольких тысяч до нескольких миллионов, или от 3 * 10² до 2 * 106 единиц.

Термин полимерные материалы – понятие общее. Под ним понимают собственно полимеры, пластмассы, а также полимерные композиционные материалы. Общее для этих веществ – это их полимерная основа, которая определяет их базовые технологические и физико-механические свойства.

В зависимости от связей между молекулами полимеры можно разделить на термопласты и реактопласты. Молекулы в термопластах связаны между собой слабыми физическими связями, в реактопластах на много более сильными – химическими.

Термопластичные полимеры

Как правило, поддаются обратимым изменениям, при воздействии на них определенных температур. При нагревании термопластов до температуры плавления, слабые физические связи исчезают, то есть материал становится жидким, пластичным, пригодным для формования, литья и прочих видов термообработки. Химические связи, соединяющие мономерные звенья молекул цепи, значительно сильнее поэтому химическое структура полимера остается неизменной. При последующем охлаждении и затвердении, физические связи восстанавливаются вместе с физико-механическими свойствами полимерного материала. Это качество позволяет не только формовать изделия из расплава с последующим охлаждением, но также многократно перерабатывать, сырье, отходы и брак.

Термореактивные полимеры

Реактопласты напротив, получают в результате смешения двух или боле компонентов, в результате реакции которых происходит полимеризация(отвердение), в подавляющем большинстве случаев необратимое, а при воздействии критических для определенного материала температур реактопласт, либо значительно теряет свои механические и прочие свойства, либо разрушается.

Однако молекулы в реактопластах связаны между собой сильными химическими связями, что наделяет их свойствами, которыми не обладают термопласты. Реактопласты обладают сетчатой структурой, если это густая структура, как у полиэфиров, то вещества полученные из них, обладают значительной жесткостью, если же структура редкая, как например у резины, вещества обладают высокой эластичностью, стойкостью к стиранию, электроизоляционными и прочими качествами.

В состав полимеров добавляют всевозможные наполнители(порошковые, волоконные и даже листовые), красители, стабилизаторы и пластификаторы. Все это делается для расширения физико-механических характеристик материла, чтобы сделать возможным его применение в большем количестве отраслей производства.

Вывод: полимерные материалы обладают множеством качеств, которые при правильном применении могут обеспечить продуктивные эксплуатационные свойства конечных изделий, а так же высокую рентабельность их производства.



polycomposite.ru

ПОЛИМЕРНЫЕ МАТЕРИАЛЫ – это… Что такое ПОЛИМЕРНЫЕ МАТЕРИАЛЫ?

,

материалы на основе вы-сокомол. соед.; обычно многокомпонентные и многофазные. П. м.- важнейший класс совр. материалов, широко используемых во всех отраслях техники и технологии, в с. х-ве и в быту. Отличаются широкими возможностями регулирования состава, структуры и св-в. Осн. достоинства П. м;: низкая стоимость, сравнит. простота, высокая производительность, малая энергоемкость и малоотходность методов получения и переработки, невысокая плотность, высокая стойкость к агрессивным средам, атм. и радиац. воздействиям и ударным нагрузкам, низкая теплопроводность, высокие оптич., радио- и электротехн. св-ва, хорошие адгезионные св-ва. Недостатки П. м.: низкая тепло- и термостойкость, большое тепловое расширение, склонность к ползучести и релаксации напряжений; для многих П. м.-горючесть.

Осн. типы П. м-пластические массы и композиционные материалы (композиты), резины, лакокрасочные материалы и лакокрасочные покрытия, клеи, компаунды полимерные, герметики, полимербетон, волокнистые пленочные и листовые материалы ( волокниты, ткани, нетканые материалы, пленки полимерные, кожа искусственная, бумага и т. п.).

По назначению П. м. подразделяются на конструкционные общего назначения и функциональные-напр. фрикционные и антифрикционные, тепло- и электроизоляционные, электропроводящие, термоиндикаторные, пьезоэлектрические, оптически активные, магнитные, фоторезисторные, антикоррозионные, абляционные.

По природе основной (полимерной) фазы (полимера связующего или пленкообразующего) П. м. могут быть природными (натуральными) и химическими (искусственными, или синтетическими). По характеру физ. и хим. превращений, протекающих в полимерной фазе на стадиях получения и переработки, П. м., как и пластич. массы, подразделяются на термопластичные и термореактивные.

В произ-ве термореактивных П. м. из прир. полимеров наиб. широко используются производные целлюлозы, из синтетических – широкий класс карбо- и гетероцепных гомополимеров, статистических, чередующихся, блок- и привитых сополимеров, их смесей и сплавов.

В произ-ве термореактивных П. м. наиб. широко используют мономеры, олигомеры, форполимеры, масла и смолы, содержащие ненасыщ. и циклич. группы, реагирующие без выделения низкомол. в-в и со сравнительно небольшими объемными усадками,-ненасыщ. поли- и олиго-эфиры, эпоксидные олигомеры и смолы, олигоизоцианаты, бисмалеинимиды, спироциклич. мономеры и олигомеры и т. п. Их состав и структура, тип и кол-во отвердителя, сшивающего агента, инициатора и катализатора, ускорителя или ингибитора определяются типом П. м. (пластич. масса, армир. пластик, лакокрасочный материал, клей и т. п.) и требованиями, предъявляемыми к его технол. и эксплуатац. св-вам.

В качестве полимерной фазы или самостоятельного П. м. широко используют макро- или микрогетерог. полимер-полимерные композиции (смеси и сплавы полимеров; блок-и привитые сополимеры, в т. ч. сетчатые, взаимопроникающие сетки; вспененные или пористые полимеры, напр. пенопласты. Среди них наиб. распространены дисперсно-эластифицир. системы, состоящие из непрерывной стеклообразной и дисперсной эластичной фаз, напр. полистирол ударопрочный, АБС-пластик, модифицированные каучуками отверждающиеся композиции, а также термоэластопласты, эластичные взаимопроникающие сетки и иономеры.

Для регулирования технол. и(или) эксплуатац. св-в полимерной фазы П. м. в нее вводят на стадии синтеза полимера или создания материала химически инертные или активные модификаторы-р-рители, пластификаторы, или мягчители, разбавители, загустители или смазки, структурообразова-тели, красители, антипирены, антиоксиданты, антиозонан-ты, противостарители, термо- и светостабилизаторы, антирады, наполнители и ПАВ; для получения пористых П. м. вводят, кроме того, и порообразователи.

Структуру и св-ва П. м. регулируют не только изменением их состава и характера распределения компонентов и фаз, но и условиями термич. и мех. воздействия при формировании (см., напр., Ориентированное состояние полимеров).

Способы и условия переработки П. м. определяются типом материала (термопластичный или термореактивный) и его исходным состоянием, т. е. типом полуфабриката (плавкий порошок, гранулы, р-ры или расплавы, дисперсии), а также видом наполнителей-нитей, жгутов, лент, тканей, бумаги, пленок и их сочетаний с полимерной фазой (см. Полимерных материалов переработка).

Лит.: Салдадзе К. М., Ионообменные высокомолекулярные соединения, М., 1960; Черняк К. И., Эпоксидные компаунды и их применение, 3 изд., Л., 1967; Смыслова Р. А., Котлярова С. В., Справочное пособие по герметизирующим материалам на основе каучуков, М., 1976; Кошелев Ф. Ф., Корнев А. Е., Буканов А. М., Общая технология резины, 4 изд., М., 1978; Клеи и герметики, под ред. Д. А. Кардашова, М.,1978; Справочник по клеям, под ред. Т. М. Мовсесяна, Л., 1980; Яковлев А. Д., Химия и технология лакокрасочных покрытий, Л., 1981; Баженов Ю. М., Бетонополимеры, М., 1983; Химические волокна. [Сб. пер. ст.], под ред. М. М. Ламаш, в. 1-10, М., 1957-81; Справочник по композиционным материалам, под ред. Д. Любина, пер. с англ., кн. 1-2, М.,;988. , П. Г. Бабаевский.

Химическая энциклопедия. — М.: Советская энциклопедия. Под ред. И. Л. Кнунянца. 1988.

dic.academic.ru

Что такое полимеры?

05.12.12 09:21

Среди изобилия всевозможных по свойствам и строению органических соединений имеет место особый класс — это полимеры (греч. «поли» — это означает «много», а «мерос» — «часть»). Прежде всего, для этих веществ характерна громадная молекулярная масса, составляющая от десятков тысяч и до миллионов атомных единиц молекулярной массы, потому их ещё часто именуют высокомолекулярными соединениями (сокр. ВМС).

К таким молекулярным гигантам можно отнести, например, важные природные полимеры (полисахариды, нуклеиновые кислоты, белки), синтетические материалы (каучук, полиэтилен, поливинилхлорид и т. д.). Поэтому без ВМС невозможно обойтись как в практической деятельности человека, так и в биологических процессах.

Органические полимеры состоят из элементарных звеньев, повторяющихся многократно и мономеров – частей молекул низкомолекулярных веществ, связанных между собой. Длина макромолекул выражается средним количеством звеньев мономера, называемой степенью полимеризации.

Натуральные полимеры синтезируются клетками животных и растительных организмов, а синтетические люди научились получать из объектов переработки нефти, природного газа, каменного угля.

Полимеры бывают кристаллическими или аморфными. Для того, чтобы произошла кристаллизация высокомолекулярных веществ нужно упорядоченное строение довольно длинных отрезков молекулярной цепи.

Соединения высокомолекулярные не имеют точной температуры плавления.

Многие полимеры при нагревании не плавятся, а только размягчаются, что дает возможность из них формовать изделия технологиями пластической деформации — литьём, прессованием, выдавливанием. Такие полимеры называются пластическими массами (пластиками, пластмассами). У пластмасс плотность низкая, они намного легче самых лёгких из металлов (алюминия, магния) и поэтому они считаются ценными и незаменимыми конструкционными материалами. Некоторые пластики по прочности превосходят алюминий и чугун, а по химической стойкости превосходят почти все металлы. Пластики могут быть устойчивыми к действию кислорода и воды, щелочей и кислот.

Как правило, пластмассы являются диэлектриками (электрический ток не проводят), а некоторые их сорта известны всем как самые лучшие изоляционные материалы из всех применяемых в современной технике.

Благодаря своей механической прочности и эластичности, электроизоляционным и прочим ценным свойствам различные изделия из полимеров применяются во многих отраслях промышленности и быту. Основные виды полимерных материалов – резины, пластические массы, лаки, волокна, клеи, краски, ионообменные смолы. Определяется значение биополимеров тем, что они являются основой всех живых организмов и принимают участие практически во всех процессах их жизнедеятельности.

На заметку: Фирменные дизельные электростанции в аренду взять вы сможете в компании союз-энергия.рф. Рекомендуем вам к сотрудничеству данную компанию!


Что такое полиуретан? < Предыдущая   Следующая >Реклама на портале

www.koros-plast.ru

Полимерные материалы

Полимеры представляют собой высокомоллекулярные соединения, то есть молекулы, масса которых М превышает 5000. За счет наличия сложных молекулярных связей в пространстве, этим материалы приобретают уникальные свойства, которые находят широкое применение в природе, в промышленности, в быту и практически в любой сфере функционирования живых организмов. 

Химия процесса: что такое полимер?

Сразу стоит сказать, что многие ошибочно полагают, что полимеры бывают только синтетическими. На самом же деле, высокомоллекулярные субстанции существуют и в природе. К примеру, органический белок, шерсть животных, слюда, асбест, пчелиный воск, натуральный каучук – всё это примеры полимерных материалов, существующих в живой природе. Человек же прошел определенный эволюционный путь от эксплуатации природных полимеров (свечи из воска, стекло из натуральной слюды, одежда из меха) до создания синтетических полимеров.

Однако как природные, так и синтетические материалы имеют в основе один и тот же принцип, – объединение многочисленных мономеров в сложную структуру. В результате прохождения реакций полимеризации, поликонденсации или полиприсоединения отдельные молекулы изменяют структуру и формируют связи друг с другом, создавая новое вещество. 

Простой пример – полиэтилен. Все мы его видели и знаем, так как нас окружают многочисленные изделия из этого материала (пластиковые пакеты, пищевая пленка и многое другое). Изначально в природе существует бесцветный горючий газ этилен, который проходит достаточно сложный технологический процесс полимеризации, в результате чего отдельные молекулы (мономеры) этилена соединяются друг с другом особыми координационными связями (или силами Ван-Дер-Ваальса).

Подходы к классификации полимеров

Так как веществ данного класса – огромное количество, существует целый ряд критериев, по которым их классифицируют. Среди основных критериев можно выделить:

  • По содержанию атомов углерода выделяют органические, элементоорганические и неорганические полимеры. При этом в неорганических полимерах также может присутствовать углерод, но только в качестве радикалов.
  • По отношению к термическому воздействию выделяют термореактивные и термопластичные полимеры. В зависимости от типа связей между мономерными звеньями, реакция на нагрев вещества может быть разной. Если речь идет о сильной химической связи, нагрев приводит к прохождению химической реакции и разрушению полимера (яркий пример – денатурация белка при нагреве). Если же мы говорим о координационных связях силами Ван-Дер-Ваальса, полимер может неограниченное количество раз нагреваться (при этом размягчаясь) и восстанавливать свои свойства (после остывания). 
  • По форме макромолекул выделяют два основных типа полимерных сеток: линейные (когда мономерные звенья выстраиваются в ряд) и разветвленные (когда мономеры формируют сложную структуру). У этих типов существует множество подвидов. 
  • По происхождению выделяют синтетические и природные полимеры. Тут всё просто: природные образуются в процессе жизнедеятельности живых организмов (включая растения), а синтетические получают в процессе химической реакции. К слову, на заре химической индустрии полиэтилен сравнивали с воском, считая эти материалы родственными и схожими по характеристикам. 

Синтетические термопласты – основа современных технологий

Сегодня такие материалы, как полиэтилен (ПЭ), полипропилен (ПП), поливинилхлорид (ПВХ) стали основой современной цивилизации. Термопласты объединяют следующие свойства, благодаря которым сфера их применения является практически безграничной:

  • Пластичность и совместимость с разными методами формования. Экструзия, литье, формование, сварка листов и многие другие методы позволяют придать термопластам практически любую форму.
  • Широкий спектр механических свойств. Полимер может быть как максимально прочным (прочнее стали), так и максимально эластичным, что позволяет разработать композиции для любых промышленных задач. Также может подбираться температурный режим.
  • Относительно небольшая хрупкость. К примеру, прозрачные полимерные изделия намного прочнее стеклянных, что обусловило массовый переход пищевой промышленности со стеклянной на пластиковую тару. 
  • Устойчивость к химическим воздействиям. Материалы хорошо переносят контакты с кислыми и щелочными средами, с водой, с жирами различного происхождения, сохраняя все свои свойства. 
  • Диэлектрические свойства. Благодаря этим свойствам полимеров и существует электроника, так как все современные приборы в значительной мере состоят из пластика. В частности, паянные многослойные платы полностью основаны на полимерах.

Потому, подводя итоги можно утверждать, что полимеры – это материалы, характеризующие эволюцию. В природе химическая эволюция позволила развиться сложным формам жизни, которые были бы невозможны без полимеров (белков, нуклеиновых кислот). А в человеческой цивилизации синтетические полимеры позволили совершить существенный эволюционный рывок для техники, промышленности и науки. 

unitreid-group.com

что это такое? Производство полимеров

Удивительно, насколько разнообразны окружающие нас предметы и материалы, из которых они изготовлены. Раньше, примерно в XV-XVI веках, основными материалами были металлы и дерево, чуть позже стекло, почти во все времена фарфор и фаянс. А вот сегодняшний век – это время полимеров, о которых и пойдет речь дальше.

Понятие о полимерах

Полимер. Что это такое? Ответить можно с разных точек зрения. С одной стороны, это современный материал, используемый для изготовления множества бытовых и технических предметов.

С другой стороны, можно сказать, это специально синтезированное синтетическое вещество, получаемое с заранее заданными свойствами для использования в широкой специализации.

Каждое из этих определений верное, только первое с точки зрения бытовой, а второе – с точки зрения химической. Еще одним химическим определением является следующее. Полимеры – это макромолекулярные соединения, в основе которых лежат короткие участки цепи молекулы – мономеры. Они многократно повторяются, формируя макроцепь полимера. Мономерами могут быть как органические, так и неорганические соединения.

Поэтому вопрос: “полимер – что это такое?” – требует развернутого ответа и рассмотрения по всем свойствам и областям применения этих веществ.

Виды полимеров

Существует множество классификаций полимеров по различным признакам (химической природе, термостойкости, строению цепи и так далее). В ниже приведенной таблице коротко рассмотрим основные виды полимеров.

Классификация полимеров
ПринципВидыОпределениеПримеры
По происхождению (возникновению)Природные (натуральные)Те, что встречаются в естественных условиях, в природе. Созданы природой.ДНК, РНК, белки, крахмал, янтарь, шелк, целлюлоза, каучук натуральный
СинтетическиеПолучены в лабораторных условиях человеком, не имеют отношения к природе.ПВХ, полиэтилен, фенолформальдегидные смолы, полипропилен, полиуретан и другие
ИскусственныеСозданы человеком в лабораторных условиях, но на основе природных полимеров.Целлулоид, ацетатцеллюлоза, нитроцеллюлоза
С точки зрения химической природыОрганической природыБольшая часть всех известных полимеров. В основе мономер органического вещества (состоит из атомов С, возможно включение атомов N, S, O, P и других).Все синтетические полимеры
Неорганической природыОснову составляют такие элементы, как Si, Ge, O, P, S, H и другие. Свойства полимеров: не бывают эластичными, не образуют макроцепей.Полисиланы, полидихлорфосфазен, полигерманы, поликремниевые кислоты
Элементоорганической природыСмесь органических и неорганических полимеров. Главная цепь – неорганика, боковые – органика.Полисилоксаны, поликарбоксилаты, полиорганоциклофосфазены.
Различие главной цепочкиГомоцепныеГлавная цепь представлена либо углеродом, либо кремнием.Полисиланы, полистирол, полиэтилен и другие.
ГетероцепныеОсновной остов из разных атомов.Полимеры примеры – полиамиды, белки, этиленгликоль.

Также различают полимеры линейного, сетчатого и разветвленного строения. Основа полимеров позволяет быть им термопластичными или термореактивными. Также они имеют различия по способности к деформации при обычных условиях.

Физические свойства полимерных материалов

Основные два агрегатных состояния, характерные для полимеров, это:

  • аморфное;
  • кристаллическое.

Каждое характеризуется своим набором свойств и имеет важное практическое значение. Например, если полимер существует в аморфном состоянии, значит, он может быть и вязкотекущей жидкостью, и стеклоподобным веществом и высокоэластичным соединением (каучуки). Это находит широкое применение в химических отраслях промышленности, строительстве, технике, производстве промышленных товаров.

Кристаллическое состояние полимеры имеют достаточно условное. На самом деле данное состояние перемежается с аморфными участками цепи, и в целом вся молекула получается очень удобной для получения эластичных, но в тоже время высокопрочных и твердых волокон.

Температуры плавления для полимеров различны. Многие аморфные плавятся при комнатной температуре, а некоторые синтетические кристаллические выдерживают довольно высокие температуры (оргстекло, стекловолокно, полиуретан, полипропилен).

Окрашиваться полимеры могут в самые разные цвета, без ограничений. Благодаря своей структуре они способны поглощать краску и приобретать самые яркие и необычные оттенки.

Химические свойства полимеров

Химические свойства полимеров отличаются от таковых у низкомолекулярных веществ. Это объясняется размером молекулы, наличием различных функциональных группировок в ее составе, общим запасом энергии активации.

В целом можно выделить несколько основных типов реакций, характерных для полимеров:

  1. Реакции, которые будут определяться функциональной группой. То есть если в состав полимера входит группа ОН, характерная для спиртов, значит, и реакции, в которые они будут вступать, будут идентичны таковым у спиртов (дегидратация, окисление, восстановление, дегидрирование и так далее).
  2. Взаимодействие с НМС (низкомолекулярными соединениями).
  3. Реакции полимеров между собой с образованием сшитых сетей макромолекул (сетчатые полимеры, разветвленные).
  4. Реакции между функциональными группировками в пределах одной макромолекулы полимера.
  5. Распад макромолекулы на мономеры (деструкция цепи).

Все перечисленные реакции имеют в практике большое значение для получения полимеров с заранее заданными и удобными человеку свойствами. Химия полимеров позволяет создавать термоустойчивые, кислотно и щелочеупорные материалы, обладающие при этом достаточной эластичностью и стабильностью.

Применение полимеров в быту

Применение этих соединений повсеместно. Мало можно вспомнить областей промышленности, народного хозяйства, науки и техники, в которых не нужен был бы полимер. Что это такое – полимерное хозяйство и повсеместное применение, и чем оно исчерпывается?

  1. Химическая промышленность (производство пластмасс, дубильных веществ, синтез важнейших органических соединений).
  2. Машиностроение, авиастроение, нефтеперерабатывающие предприятия.
  3. Медицина и фармакология.
  4. Получение красителей и взрывчатых веществ, пестицидов и гербицидов, инсектицидов сельского хозяйства.
  5. Строительная промышленность (легирование сталей, конструкции звуко- и теплоизоляции, строительные материалы).
  6. Изготовление игрушек, посуды, труб, окон, предметов быта и домашней утвари.

Химия полимеров позволяет получать все новые и новые, совершенно универсальные по свойствам материалы, равных которым нет ни среди металлов, ни среди дерева или стекла.

Примеры изделий из полимерных материалов

Прежде чем называть конкретные изделия из полимеров (их невозможно перечислить все, слишком большое их многообразие), для начала нужно разобраться, что дает полимер. Материал, который получают из ВМС, и будет основой для будущих изделий.

Основными материалами, изготовленными из полимеров, являются:

  • пластмассы;
  • полипропилены;
  • полиуретаны;
  • полистиролы;
  • полиакрилаты;
  • фенолформальдегидные смолы;
  • эпоксидные смолы;
  • капроны;
  • вискозы;
  • нейлоны;
  • полиэфирные волокна;
  • клеи;
  • пленки;
  • дубильные вещества и прочие.

Это только небольшой список из того многообразия, что предлагает современная химия. Ну а здесь уже становится понятным, какие предметы и изделия изготавливаются из полимеров – практически любые предметы быта, медицины и прочих областей (пластиковые окна, трубы, посуда, инструменты, мебель, игрушки, пленки и прочее).

Полимеры в различных отраслях науки и техники

Мы уже затрагивали вопрос о том, в каких областях применяются полимеры. Примеры, показывающие их значение в науке и технике, можно привести следующие:

  • применение резины;
  • антистатические покрытия;
  • электромагнитные экраны;
  • корпусы практически всей бытовой техники;
  • транзисторы;
  • светодиоды и так далее.

Нет никаких ограничений фантазии по применению полимерных материалов в современном мире.

Производство полимеров

Полимер. Что это такое? Это практически все, что нас окружает. Где же они производятся?

  1. Нефтехимическая (нефтеперерабатывающая) промышленность.
  2. Специальные заводы по производству полимерных материалов и изделий из них.

Это основные базы, на основе которых получают (синтезируют) полимерные материалы.

autogear.ru

Синтетические полимеры. Искусственные полимерные материалы

Виды полимеризации

 

1. В основу классификации полимеризации могут быть положены различные признаки:

 

– число типов молекул мономеров:

– гомополимеризация — полимеризация одинаковых мономеров;

– сополимеризация — полимеризация двух и более разных мономеров.

 

2. Природа активного центра и механизм процесса:

– радикальная полимеризация — активными центрами являются свободные радикалы;

– ионная полимеризация — активные центры ионы или поляризованные молекулы;

 

3. Фазовое состояние мономеров:

– газофазная полимеризация;

– жидкофазная полимеризация;

– твердофазная полимеризация.

 

4. Структура области, в которой сосредоточены активные центры:

– объемная полимеризация — полимеризация во всем объёме мономера;

– фронтальная полимеризация — полимеризация в узком распространяющемся фронте;

– эмульсионная полимеризация — полимеризация на поверхности высокодиспергированных частиц мономера в эмульсии.

 

5. Способ инициирования:

– фотополимеризация;

– термическая полимеризация;

– радиационная полимеризация и др.

 

6. Структурные особенности полученного полимера:

– стереорегулярная полимеризация — полимеризация с образованием полимеров с упорядоченной пространственной структурой;

 

7. Технологические особенности полимеризации:

– полимеризация при высоком давлении и др.

 

8. Химическая природа мономеров:

– полимеризация олефинов и др.

В основе химических превращений полимеров лежит замена одних функциональных групп на другие, что проходит без изменения степени полимеризации.

 

Исторические данные

 

Полимеризация была открыта ещё в середине XIX века, практически одновременно с выделением первых способных к полимеризации мономеров (стирола, изопрена, винилхлорида, метакриловой кислоты и др.). Однако суть полимеризации как цепного процесса образования истинных химических связей между молекулами мономера была понята лишь в 20—30-е гг. XX века благодаря работам Г. Штаудингера, С. В. Лебедева, Б. В. Бызова, К. Циглера. В 1922 химик Штаудингер доказал, что полимеры представляют собой соединения, состоящие из больших молекул, атомы которых связаны между собой ковалентными связями.

Синтетические полимеры. Искусственные полимерные материалы

 

Человек давно использует природные полимерные материалы в своей жизни. Это кожа, меха, шерсть, шелк, хлопок и т.п., используемые для изготовления одежды, различные связующие (цемент, известь, глина), образующие при соответствующей обработке трехмерные полимерные тела, широко используемые как строительные материалы. Однако промышленное производство цепных полимеров началось в начале XX в., хотя предпосылки для этого создавались ранее.

Практически сразу же промышленное производство полимеров развивалось в двух направлениях – путем переработки природных органических полимеров в искусственные полимерные материалы и путем получения синтетических полимеров из органических низкомолекулярных соединений.

 

В первом случае крупнотоннажное производство базируется на целлюлозе. Первый полимерный материал из физически модифицированной целлюлозы – целлулоид – был получен еще в начале XX в. Крупномасштабное производство простых и сложных эфиров целлюлозы было организовано до и после Второй мировой войны и существует до настоящего времени. На их основе производят пленки, волокна, лакокрасочные материалы и загустители. Необходимо отметить, что развитие кино и фотографии оказалось возможным лишь благодаря появлению прозрачной пленки из нитроцеллюлозы.

 

Производство синтетических полимеров началось в 1906 г., когда Л. Бакеланд запатентовал так называемую бакелитовую смолу – товар конденсации фенола и формальдегида, превращающийся при нагревании в трехмерный полимер. В течение десятилетий он применялся для изготовления корпусов электротехнических приборов, аккумуляторов, телевизоров, розеток и т.п., а в настоящее время чаще используется как связующее и адгезивное вещество.

Эпохальным событием в мире полимеров явилось открытие в середине 50-х годов XX столетия и быстрое промышленное освоение Катализаторов Циглера–Натта, что привело к появлению полимерных материалов на основе полиолефинов и, прежде всего, полипропилена и полиэтилена низкого давления (до этого было освоено производство полиэтилена при давлении порядка 1000 атм.), а также стереорегулярных полимеров, способных к кристаллизации. Затем были внедрены в массовое производство полиуретаны – наиболее распространенные герметики, адгезивные и пористые мягкие материалы (поролон), а также полисилоксаны – элементорганические полимеры, обладающие более высокими по сравнению с органическими полимерами термостойкостью и эластичностью.

 

Список замыкают так называемые уникальные полимеры, синтезированные в 60-70 гг. XX в. К ним относятся ароматические полиамиды, полиимиды, полиэфиры, полиэфир-кетоны и др.; непременным атрибутом этих полимеров является наличие у них ароматических циклов и (или) ароматических конденсированных структур. Для них характерно сочетание выдающихся значений прочности и термостойкости.

 

Полиэтилен

Термопластичный полимер белого цвета. Полиэтилен — полимер этена (этилена).

В промышленности его получают полимеризацией этена при высоком давлении и низком или среднем давлении. Структура и свойства полиэтилена определяются способом его получения. Среднемассовая молекулярная масса наиболее распространённых марок 30-800 тыс.; степень кристалличности и плотность при 20 ?С составляют соответственно 50% и 0,918-0,930 г/см3 Для полиэтилена низкой плотности и 75-90% и 0,955-0,968 г/см3 для полиэтилена высокой плотности. С увеличением плотности возрастают твёрдость, модуль упругости при изгибе, предел текучести, химическая стойкость. Полиэтилен сочетает высокую прочность при растяжении (10-45 Мн/м2, или 100-450 кгс/см2) с эластичностью (относительное удлинение при разрыве 500-1000%). Он обладает хорошими электроизоляционными свойствами (например, тангенс угла диэлектрических потерь 2×10-4-4×10-4 при температурах от -120 до 120 ?C и частоте 10-50 кгц). Устойчив к действию щелочей любых концентраций, органических кислот, концентрированных соляной и плавиковой кислот; разрушается азотной кислотой, хлором и фтором; выше 80 C растворяется в алифатических и ароматических углеводородах и их галогенопроизводных; сравнительно стоек к радиоактивным излучениям; безвреден; интервал рабочих температур от -80 ¸ -120 до 60 ¸ 100 C.

 

Полиэтилен – один из самых дешёвых полимеров, сочетающий ценные свойства со способностью перерабатываться всеми известными для термопластов высокопроизводительными методами. Поэтому в мировом производстве полимеризационных пластиков полиэтилен занимает первое место .

Из полиэтилен изготовляют плёнки, трубы (в т. ч. для сточных вод и агрессивных жидкостей, магистральные газопроводы), профилированные предмета торговли, изоляцию для проводов и кабеля, ёмкости (бутыли, канистры, цистерны), гальванические ванны, санитарно-технические предмета торговли, волокна и др., широко применяемые в различных отраслях техники, сельском хозяйстве и в быту. Наибольшее распространение получил полиэтилен низкой плотности. Большое техническое значение имеют также продукты хлорирования и хлорсульфирования полиэтилен.

 

Полистирол

Полистирол — товар полимеризации стирола (винилбензола) относится к полимерам класса термопластов.

Фенильные группы препятствуют упорядоченному расположению макромолекул и формированию кристаллических образований. Это жёсткий, хрупкий, аморфный полимер с высокой степенью оптического светопропускания, невысокой механической прочностью, выпускается в виде прозрачных гранул цилиндрической формы. Полистирол имеет низкую плотность (1060 кг/M3), термическую стойкость (до 105 °С), усадка при литьевой переработке 0,4-0,8%. Полистирол обладает отличными диэлектрическими свойствами и неплохой морозостойкостью (до -40°C). Имеет невысокую химическую стойкость (кроме разбавленных кислот, спиртов и щелочей). Для улучшения свойств полистирола его модифицируют путём смешения с различными полимерами – подвергают сшиванию, таким образом получая сополимеры стирола.

Широкое применение полистирола (ПС) и пластиков на его основе базируется на его невысокой стоимости, простоте переработки и огромном ассортименте различных марок. Наиболее широкое применение (более 60% производства полистирольных пластиков) получили ударопрочные полистиролы, представляющие собой сополимеры стирола с бутадиеновым и дивинил-стирольным каучуком. В настоящее время созданы и другие многочисленные модификации сополимеров стирола.

Промышленное производство полистирола основано на радикальной полимеризации стирола. Различают 3 основных способа его получения:

Эмульсионный (ПСЭ). Наиболее устаревший метод получения, не получивший широкого применения в производстве. Эмульсионный полистирол получают в результате реакции полимеризации стирола в водном растворе щелочных веществ при температуре 85-95°C. Для этого метода требуются: стирол, вода, эмульгатор и инициатор полимеризации. Стирол предварительно очищают от ингибиторов: требутил-пирокатехина или гидрохинона. В качестве инициаторов реакции применяют водорастворимые соединения, двуокись водорода или персульфат калия. В качестве эмульгаторов применяют соли жирных кислот, щелочи (мыло), соли сульфокислот. Реактор наполняют водным раствором касторового масла и тщательного перемешивая вводят стирол и инициаторы полимеризации, после чего полученная смесь нагревается до 85-95С. Мономер, растворённый в мицелах мыла, начинает полимеризовываться, поступая из капель эмульсии. В результате чего образуются полимер-мономерные частицы. На стадии 20% полимеризации мицеллярное мыло расходуется на образование адсорбированных слоёв и процесс далее протекает внутри частиц полимера. Процесс заканчивается, когда содержание свободного стирола станет менее 0,5%. Далее эмульсия транспортируется из реактора на стадию осаждения с целью дальнейшего снижения остаточного мономера, для этого эмульсию коагулируют раствором поваренной соли и сушат, получая порошкообразную массу с размерами частиц до 0,1 мм. Остатки щелочных веществ влияют на качество полученного материала, поскольку полностью устранить посторонние примеси невозможно, а их наличие придаёт полимеру желтоватый оттенок. Данным методом можно получать полистирол с наибольшей молекулярной массой. Полистирол получаемый по данному методу имеет аббревиатуру – ПСЭ, которая периодически встречается в технической документации и старых учебниках по полимерным материалам.

Суспензионный (ПСС). Суспензионный метод полимеризации производится по периодической схеме в реакторах с мешалкой и теплоотводящей рубашкой. Стирол подготавливают, суспендируя его в химически чистой воде посредством применения стабилизаторов эмульсии (поливинилового спирта, полиметакрилата натрия, гидроокиси магния) и инициаторов полимеризации. Процесс полимеризации производится при постепенном повышении температуры (до 130°С) под давлением. Результатом является – получение суспензии из которой полистирол выделяют путём центрифугирования, затем его промывают и сушат. Данный метод получения полистирола также является устаревшим и наиболее пригоден для получения и сополимеров стирола. Данный метод в основном применяется в производстве пенополистирола.

Блочный или получаемый в массе (ПСМ). Различают две схемы производства: полной и неполной конверсии. Термическая полимеризацией в массе по непрерывной схеме представляет собой систему последовательно соединенных 2-3 колонных аппарата-реактора с мешалками. Полимеризацию проводят по-стадийно в среде бензола – сначала при температуре 80-100 °С, а затем стадией 100-220 °С. Реакция прекращается при степени превращения стирола в полистирол до 80-90% массы (при методе неполной конверсии степень полимеризации доводят до 50-60%). Не прореагировавший стирол-мономер удаляют из расплава полистирола вакуумом и понижают содержания остаточного стирола в полистироле до 0,01-0,05%, не прореагировавший мономер возвращается на полимеризацию. Полистирол, полученный блочным методом отличается высокой чистотой и стабильность параметров. Данная технология наиболее эффективна и практически не имеет отходов.

Поливинилхлорид

Поливинилхлорид — (ПВХ, полихлорвинил, вестолит, хосталит, виннол, корвик, сикрон, джеон, ниппеон, сумилит, луковил, хелвик, норвик и др.) пластмасса белого цвета, термопластичный полимер винилхлорида. Отличается химической стойкостью к щелочам, минеральным маслам, многим кислотам и растворителям. Не горит на воздухе, но обладает малой морозостойкостью (–15°С). Нагревостойкость: +65°С.

[—Ch3CHCl—]n

Молекулярная масса 10–150 тыс.; плотность — 1,35–1,43 г/см³. Температура стеклования 75–80 °С (для теплостойких марок до 105 °С), температура плавления — 150–220 °С. Трудногорюч. При температурах выше 110–120 °С склонен к разложению с выделением хлористого водорода HCl.

Растворяется в циклогексаноне, тетрагидрофуране (ТГФ), диметилформамиде (ДМФА), дихлорэтане, ограниченно – в бензоле, ацетоне. Не растворяется в воде, спиртах, углеводородах; стоек в растворах щелочей, кислот, солей.

Предел прочности при растяжении — 40–50 МПа, при изгибе — 80–120 МПа. Удельное электрическое сопротивление — 1012 – 1013 Ом·м.

Устойчив к действию влаги, кислот, щелочей, растворов солей, бензина, керосина, жиров, спиртов, обладает хорошими диэлектрическими свойствами.

Тангенс угла потерь порядка 0,01–0,05.

Получается суспензионной или эмульсионной полимеризацией винилхлорида, а также полимеризацией в массе.

Применяется для электроизоляции проводов и кабелей, производства листов, труб (преимущественно хлорированный поливинилхлорид), пленок, пленок для натяжных потолков, искусственных кож, поливинилхлоридного волокна, пенополивинилхлорида, оконных профилей, линолеума, обувных пластикатов, мебельной кромки и т.д.

Основной проблемой, связанной с использованием ПВХ, является сложность его утилизации – при сжигании образуются высокотоксичные хлорорганические соединения.

По истечении 10-ти лет использования включается обратная реакция, то есть материал самостоятельно начинает выделять хлорорганические соединения в окружающую среду. Современные технологии создают способы блокирования этого свойства ПВХ, но они пока малоэффективны.

Пластмассы

 

Пластма́ссы (пласти́ческие ма́ссы, пла́стики) — органические материалы, основой которых являются синтетические или природные высокомолекулярные соединения (полимеры). Исключительно широкое применение получили пластмассы на основе синтетических полимеров.

Название «пластмассы» означает, что эти материалы под действием нагревания и давления способны формироваться и сохранять после охлаждения или отвердения заданную форму. Процесс формования сопровождается переходом пластически деформируемого (вязкотекучего) состояния в стеклообразное. В зависимости от природы полимера и характера его перехода из вязкотекучего в стеклообразное состояние при формовании предметов торговли пластмассы делят на термопласты и реактопласты.

Производство синтетических пластмасс основано на реакциях полимеризации, поликонденсации или полиприсоединения низкомолекулярных исходных веществ, выделяемых из угля, черного золота или природного газа. При этом образуются высокомолекулярные связи с большим числом исходных молекул (приставка «поли-» от греческого «много», например этен-полиэтилен).

Основные механические характеристики пластмасс те же, что и для металлов.

Мебельные пластмассы. Пластик, который используют для производства мебели, получают путем пропитки бумаги термореактивными смолами. Производство бумаги является наиболее энерго- и капиталлоемким этапом во всем процессе производства пластика. Используется 2 типа бумаг: основой пластика является крафт-бумага (плотная и небеленая) и декоративная (для придания пластику рисунка). Смолы подразделяются на фенолформальдегидные, которые используются для пропитки крафт-бумаги, и меламиноформальдегидные, которые используются для пропитки декоративной бумаги. Меламиноформальдегидные смолы производят из карбамида, поэтому они стоят дороже.

Мебельный пластик состоит из нескольких слоев. Защитный слой — оверлей — практический прозрачный. Изготавливается из бумаги высокого качества, пропитывается меламиноформальдегидной смолой. Следующий слой — декоративный. Затем несколько слоев крафт-бумаги, которая является основой пластика. И последний слой — компенсирующий (крафт-бумага, пропитанная меламиноформальдегидными смолами). Этот слой присутствует только у американского мебельного пластика.

Готовый мебельный пластик представляет из себя прочные тонированные листы толщиной 1-3 мм. По свойствам он близок к гетинаксу. В частности, он не плавится от прикосновения жалом паяльника, и, строго говоря, не является пластической массой, так как не может быть отлит в горячем состоянии, хотя и поддается изменению формы листа при нагреве. Мебельный пластик широко использовался в XX веке для отделки салонов вагонов метро.

Пластмассы характеризуются малой плотностью (0,85—1,8 г/см³), чрезвычайно низкой электрической и тепловой проводимостью, не очень большой механической прочностью. При нагревании (часто с предварительным размягчением) они разлагаются. Не чувствительны к влажности, устойчивы к действию сильных кислот и оснований, отношение к органическим растворителям различное (в зависимости от химической природы полимера). Физиологически почти безвредны. Свойства пластмасс можно модифицировать методами сополимеризации или стереоспецифической полимеризации, путём сочетания различных пластмасс друг с другом или с другими материалами, такими как стеклянное волокно, текстильная ткань, введением наполнителей и красителей, пластификаторов, тепло- и светостабилизаторов, облучения и др., а также варьированием сырья, например использование соответствующих полиолов и диизоцианатов при получении полиуретанов.

Термопласты (термопластичные пластмассы) при нагреве расплавляются, а при охлаждении возвращаются в исходное состояние.

Реактопласты (термореактивные пластмассы) отличаются более высокими рабочими температурами, но при нагреве разрушаются и при последующем охлаждении не восстанавливают своих исходных свойств.

Твёрдость пластмасс определяется по Бринеллю при нагрузках 50—250 кгс на шарик диаметром 5 мм.

Теплостойкость по Мартенсу — температура, при которой пластмассовый брусок с размерами 120 × 15 × 10 мм, изгибаемый при постоянном моменте, создающем наибольшее напряжение изгиба на гранях 120 × 15 мм, равное 50 кгс/см², разрушится или изогнётся так, что укреплённый на конце образца рычаг длиной 210 мм переместится на 6 мм.

Теплостойкость по Вика — температура, при которой цилиндрический стержень диаметром 1,13 мм под действием груза массой 5 кг (для мягких пластмасс 1 кг) углубится в пластмассу на 1 мм.

Температура хрупкости (морозостойкость) — температура, при которой пластичный или эластичный материал при ударе может разрушиться хрупко.

Для придания особых свойств пластмассе в нее добавляют пластификаторы (силикон, дибутилфталат, ПЭГ и т.п.), антипирены (дифенилбутансульфокислота), антиоксиданты (трифенилфосфит, непредельные углеводороды).

Система маркировки пластика:

Для оказания помощи утилизации одноразовых предметов, в 1988 году союзом Пластмассовой Промышленности была разработана систему маркировки для всех видов пластика и идентификационные коды. Маркировка пластика состоит из 3-х стрелок в форме треугольника внутри которых находится цифра, обозначающая тип пластика:

PET или PETE — Полиэтилентерефталат. Обычно используется для бутылок минеральной воды, безалкогольных напитков и фруктовых соков, упаковка, блистеры, обивка. Такие пластики являются потенциально опасными для пищевого использования.

PEHD или HDPE — Полиэтилен высокой плотности. Некоторые бутылки, фляги, а также в более общем плане полу-жесткая упаковка. Считаются безопасными для пищевого использования.

ПВХ или PVC — Поливинилхлорид. Используется для труб, трубок, садовой мебели, в напольных покрытиях, для оконных профилей, жалюзи, бутылок моющих средств и клеенки. Материал является потенциально опасными для пищевого использования, поскольку может содержать диоксины, бисфенол А, ртуть, кадмий.

LDPE и PEBD — полиэтилен низкой плотности. Брезенты, мусорные мешки, пакеты, пленки и гибкие ёмкости. Считается безопасным для пищевого использования.

PP – Полипропилен. Используется в автопрома (оборудование, бамперы), при изготовлении игрушек, а также в пищевой промышленности, в основном при изготовлении упаковок. Считается безопасным для пищевого использования.

PS – Полистирол. Используется при изготовлении плит теплоизоляции зданий, пищевых упаковок, столовых приборов и чашек, коробок CD и прочих упаковок (пищевой плёнки и пеноматериалов), игрушек, посуды, ручек и так далее. Материал является потенциально опасным, особенно в случае горения, поскольку содержит стирол.

OTHER или О – Прочие. К этой группе относится любой другой пластик, который не может быть включен в предыдущие группы. Например сюда относится пластмасса, основанная на поликарбонате. Такие пластмассы являются потенциально токсичными, особенно те, в которых используется поликарбонат, и, основанные на бисфеноле А.

studopedya.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *