Содержание никеля в стали в – Стали содержания никеля – Справочник химика 21
alexxlab | 20.04.2016 | 0 | Вопросы и ответы
Стали содержания никеля – Справочник химика 21
Никель, как и хром, применяется как легирующий элемент в сплавах. В низко- и среднелегированных сталях содержание никеля состав ляет около 3—4%. В нержавеющих, кислотостойких, жаропрочных, немагнитных и других сталях никеля содержится от 8 до 25%, а в некоторых сталях — до 35—80%. Сталь, содержащая 36% N1, 0,5% Мп и 0,5% С, является прекрасным материалом для изготовления различных точных приборов. Содержание никеля в некоторых сталях приведено в табл. 25. [c.304]Известно, что с увеличением в низколегированной стали содержания никеля уменьшается ее сопротивление коррозионному растрескиванию в сероводородсодержащих средах, однако существенное увеличение содержания никеля (до 30 %) делает углеродистые стали весьма устойчивыми против растрескивания, Однозначных данных о влиянии молибдена на стойкость сталей в сероводородсодержащих средах в литературе не обнаружено. Стали, легированные кобальтом, кремнием и диспрозием, отличаются в указанных средах повышенной стойкостью к коррозионному растрескиванию [8].
Определяют никель в стали. Содержание никеля около 5 %, осаждение проводят диметилглиоксимом. Весовая форма после высушивания — диметилглиоксимат никеля. При фильтровании через стеклянный фильтрующий тигель масса осадка должна составлять —0,2 г. [c.117]
Пример 3. Найти массу навески стали, необходимой для определения содержания никеля в стали. Содержание никеля составляет около 5%. Осаждают никель диметилглиоксимом. Весовая форма — диметилглиоксимат никеля. При фильтровании через стеклянный фильтрующий тигель масса осадка должна, составлять 0,2 г. [c.99]
Если одновременно присутствует более 12% хрома, то для получения кислотоупорных сталей содержание никеля может быть значительно уменьшено и доведено до 8—12%- Далее стойкость может быть еще более повышена присадкой 2—4% меди, например для защиты от серной кислоты, и при добавке 2—4% молибдена, например для защиты от разбавленной соляной кислоты [188]. [c.69]
При уменьшении в этих сталях содержания никеля в 2 раза с одновременным повышением содержания хрома до 21% кислотостойкость сплавов сохраняется. [c.38]
Непосредственное хромирование и особенно твердое хромирование легированных сталей, которое может потребоваться по соображениям износостойкости, не представляет особых трудностей. По данным Леви низколегированные стали [содержание никеля, хрома не многим более 5% (по массе)] могут быть актированы следующим образом [c.356]
Никель повышает крепость и вязкость сталей. Содержание никеля колеблется от 1,25 до 5%. Никелевые стали широко применяют для изготовления деталей, подвергающихся ударным и переменным нагрузкам. На практике для различных конструкций получили распространение хромоникелевые стали, так как такие стали обладают хорошей твердостью (от присадки хрома) и не хрупки (от присадки никеля), а также хорошо противостоят коррозии.
Во время и после второй мировой войны считали, что предела возмоншо-стям эмиссионного спектрального анализа не существует. Полагали, что увеличение рабочего интервала длин волн позволит, помимо металлов, определять галогены и газы считали, что повышением дисперсии спектрографа, созданием сложных электрических источников света, использованием уравнений с большим числом поправочных членов и улучшением фотографических методов измерения интенсивности линий можно будет определить любую концентрацию любого элемента в любой основе. Однако все эти надежды не оправдались. Оказалось, что при содержании элементов выше нескольких процентов точность спектрального метода уже недостаточна для удовлетворения все возрастающих требований промышленности. Так, если в нержавеющей стали содержание никеля по техническим условиям должно составлять 8—9%, производитель, естественно, ради экономии будет ориентироваться на нин ний предел. Следовательно, чем точнее определено содержание никеля, тем ближе можно подойти к 8%, надежно удовлетворяя техническим условиям. [c.147]
Никель повышает механическую прочность и вязкость сталей. Содержание никеля в стали колеблется от 1,25 до 5%. Никелевые стали широко применяются для изготовления деталей, подвергающихся ударным и переменным нагрузкам. Для изготовления различных конструкций нередко используются хромоникелевые стали, обладающие хорошей твердостью (благодаря присадке хрома) и отсутствием хрупкости (вследствие присадки никеля), а также хорошо сопротивляющиеся коррозии. В самолетостроении и автотракторном машиностроении хромоникелевая сталь (1% Сг и 2—3% N1) применяется для изготовления пальцев поршней, шестерен, коллекторов, валов и других деталей двигателя. [c.148]
Примечание. Если в стали содержание никеля около или менее 0,20%, то для испытания берут 5 нл раствора А. При анализе стали можно использовать эталонные раствор , приготовленные в условиях, указанных для определения никеля в растворе чистой соли. Оптическую плотность в этом случав следует измерять используя в качестве нулевого раствора испытуемый раствор стали, в котором не проведена колориметрическая реакция (без добавления к нену диметилглиоксима, щелочи и окислителя).
chem21.info
что дает хром, никель и молибден
Хром, никель и молибден являются важнейшими легирующими элементами сталей. Их применяют в различных сочетаниях и получают различные категории легированных сталей: хромистые, хромоникелевые, хромоникельмолибденовые и тому подобные легированные стали.
Влияние хрома на свойства сталей
Стремление хром образовывать карбиды является средним среди других карбидообразующих легирующих элементов. При низком соотношении Cr/C содержания хрома по отношению к железу образуется только цементит вида (Fe,Cr) 3C. С увеличением отношения содержания хрома и углерода в стали Cr/C появляются хромистые карбиды вида (Cr,Fe)7C3 или (Cr,Fe)23C6 или оба. Хром повышает способность сталей к термическому упрочнению, их стойкость к коррозии и окислению, обеспечивает повышение прочности при повышенных температурах, а также повышает сопротивление абразивному износу высокоуглеродистых сталей.
Карбиды хрома являются и износостойкими. Именно они обеспечивают стойкость стальным лезвиям – не зря из хромистых сталей изготавливают лезвия ножей. Сложные хроможелезистые карбиды входят в твердый раствор аустенита очень медленно – поэтому при нагреве таких сталей под закалку требуется более длительная выдержка при температуре нагрева. Хром по праву считается самым важным легирующим элементом в сталях. Добавление хрома в стали побуждает примеси, такие как фосфор, олово, сурьма и мышьяк сегрегировать к границам зерен, что может вызвать в сталях отпускную хрупкость.
Влияние никеля на свойства сталей
Никель не образует в сталях карбидов. В сталях он является элементом, способствующим образованию и сохранению аустенита. Никель повышает упрочняемость сталей. В комбинации с хромом и молибденом никель еще больше повышает способность сталей к термическому упрочнению, способствует повышению вязкости и усталостной прочности сталей. Растворяясь в феррите никель повышает его вязкость. Никель увеличивает сопротивление коррозии хромоникелевых аустенитных сталей в неокисляющих кислотных растворах.
Влияние молибдена на свойства сталей
Молибден с готовностью образует в сталях карбиды. Он растворяется в цементите только немного. Молибден образует карбиды молибдена, как только содержание углерода в стали становится достаточно высоким. Молибден способен обеспечивать дополнительное термическое упрочнение в ходе отпуска закаленных сталей. Он повышает сопротивление сталей ползучести низколегированных при высоких температурах.
Добавки молибдена способствуют измельчению зерна сталей, повышают упрочняемость сталей термической обработкой, увеличивают усталостную прочность сталей. Легированные стали с содержанием молибдена 0,20-0,40 % или такое же количество ванадия замедляют возникновение отпускной хрупкости, но не устраняют ее полностью. Молибден повышает коррозионную стойкость сталей и поэтому широко применяется в высоколегированных ферритных нержавеющих сталях и в хромоникелевых аустенитных нержавеющих сталях. Высокое содержание молибдена снижает склонность нержавеющей стали к точечной (питтинговой) коррозии. Молибден оказывает очень сильное упрочнение твердого раствора аустенитных сталей, которые применяются при повышенных температурах.
Источник: Steel Heat Treatment: Metallurgy and Technologies, ed. G. E. Totten, 2006
steel-guide.ru
Легирование металлов
При некоторых условиях эксплуатации стальных изделий и конструкций обычные физико-механические характеристики материал не удовлетворяют поставленным требованиям. В таких случаях стали легируют – добавляют при выплавке к исходному составу другие химические элементы (в основном – тоже металлы, хотя как будет показано далее, есть и исключения). В результате сталь становится прочнее, твёрже, устойчивее к внешним неблагоприятным факторам, хотя и теряет в своей пластичности, что в большинстве ситуаций ухудшает её обрабатываемость.
Технические требования к легированным сталям регламентированы ГОСТ 4543 (применительно к тонколистовому стальному прокату действует ещё ГОСТ 1542). В то же время ряд комплексно и сложнолегированных сталей производится согласно ТУ металлургических предприятий.
Легирование и примеси – есть ли разница?
С формальной точки зрения, некоторые химические элементы, содержащиеся в обычных сталях, как конструкционных, так и обычного качества, тоже можно называть легирующими. К таким можно отнести, например, медь (до 0,2%), кремний (до 0,37%) и т.д.Постоянными спутниками любой стали являются фосфор и сера. Тем не менее, металловеды относят их по большей части не к легирующим добавкам, а к примесям, хотя иногда процентное содержание другого легирующего элемента может быть даже меньшим.
Причина заключается в том, что любая примесь является следствием либо чистоты исходной руды (марганец), либо специфики металлургических процессов плавки (сера, фосфор). Теоретически выплавленная без меди, фосфора и серы сталь обладала бы такими же механическими свойствами. Легирование же имеет своей конечной целью именно повышение определённых технических характеристик стали. При этом
Наличие химического элемента с концентрацией более 1% даёт основание вводить его условное обозначение в марку стали. Кроме вышеупомянутой стали 65Г, подобной чести удостаивается также и алюминий (присутствующий, в частности, в стали О8Ю). В данном случае алюминий вводится в обычную конструкционную сталь О8 с целью её раскисления, а то, что при этом несколько повышаются показатели её пластичности, является лишь удачным сопутствующим обстоятельством. Борирование стали обеспечивает ей повышенную последующую деформируемость, поэтому даже микродобавки бора в химический состав стали отмечаются соответственно изменённой её маркировкой (например, в стали 20Р присутствует всего 0,001…0,005 % бора).
В целом принято, что:
- Стали, содержащие только один, намеренно вводимый в состав элемент;
- Стали, в составе которых имеются иные, кроме углерода и марганца, химические элементы в количестве не более 1%
— легированными не считаются. С другой стороны, если в составе выплавляемого сплава процентное содержание железа не превышает 55%, то такой материал уже не может называться легированной сталью.
Общая классификация легирующих элементов в сталях
Преобладающее положение в списке легирующих элементов имеют металлы. Исключение составляют кремний и бор.
Наличие легирующих элементов оказывает преобладающее влияние на вид диаграммы состояния системы «железо-углерод», и на наличие/отсутствие химических соединений в конечном продукте (нитридов, карбидов и более сложных по формуле компонентов). Последние, в свою очередь существенно видоизменяют микроструктуру стали.
В связи с этим, легирующие сталь металлы подразделяются на две группы:
- Металлы, которые увеличивают область твёрдых растворов на основе γ-железа (аустенитная область на диаграмме состояния), что приводит к повышению разнообразия конечной микроструктуры легированной стали после её упрочняющей термообработки). К таким элементам относятся никель, марганец, кобальт, медь, а также азот.
- Металлы и химические элементы, наличие которых сужает γ-область, зато повышает прочность стали. К ним относят хром, вольфрам. ванадий, молибден, титан.
В процессе получения легированных сталей изменяются следующие закономерности в её свойствах.
Как известно, разные элементы обладают различной кристаллической структурой (для металлов это – гранецентрированная и объёмноцентрированная). Само же железо имеет объёмноцентрированную решётку.
При внедрении в сталь металла со сходным типом решётки область существования α-раствора (феррита) увеличивается за счёт соответствующего уменьшения аустенитной области. В результате микроструктура стабилизируется, что допускает более широкий выбор технологических процессов последующей термообработки.
Наоборот, при наличии в стали металла с другим типом решётки аустенитная область сужается. Такая сталь при своей последующей механической обработке будет более пластичной.
Легирование стали некоторыми металлами вообще невозможно. Это происходит, если разница в атомных диаметрах элементов превышает 15%.
Именно по этой причине такой металл как цинк вводят в качестве легирующей добавки только в цветные металлы и сплавы. Ограниченное применение для целей легирования стали находят также химические элементы, которые неспособны образовывать при выплавке устойчивые химические соединения с углеродом, железом и азотом.
Зависимость характеристик стали от насыщения её определёнными химическими элементами окончательно ещё не изучено. Это объясняется тем, что при комплексном легировании каждый компонент может взаимодействовать по разному с другими, причём такие изменения закономерному объяснению часто не поддаются. Поэтому вопросы целесообразности применения того либо иного легирующего элемента разрешаются экспериментальным путём.
Доказанными считаются следующие положения:
- Эффективность процесса повышается при увеличении растворимости азота и углерода в легирующей добавке, и в основном железе;
- Стабильность окончательных свойств стали повышается при увеличении размеров аустенитной зоны;
- Качество стали, легированной металлами и элементами с меньшим, чем у железа порядковым номером (в таблице химических элементов Д. Менделеева) хуже, чем в противоположном случае;
- Более тугоплавкие, по сравнению с железом, металлы повышают прочность стали при любых вариантах её дальнейшей термообработки.
Впрочем, вторичные взаимодействия, сильно зависящие от способа выплавки стали, могут существенно корректировать эти положения. Поэтому на данном этапе с уверенностью можно говорить лишь о влиянии конкретных легирующих элементов на свойства стали.
Влияние хрома
Хром – металл, особенно часто применяемый для целей легирования. Его добавляют как в конструкционные стали (например, 20Х, 40Х), так и в инструментальные (9ХС, Х12М). При этом конечные свойства легированной хромом стали сильно зависят от его содержания в ней. При низких (менее 0,5…0,7%) концентрациях структура стали становится боле грубой, и чувствительной к направлению её последующей обработки, особенно при прокатке и гибке в холодном состоянии. Ухудшается также равномерность распределения основных составляющих микроструктуры.
Как уже было отмечено выше, одной из главных целей легирования является формирование в стали карбидов металлов, прочность и твёрдость которых заметно выше, чем основного металла. Хром образует два вида карбидов: гексагональный Cr7C3 и кубический Cr23С6, причём в обоих случаях прочность и хладостойкость стали возрастают. Особенностью карбидов хрома является присутствие в их структуре также и других элементов – железа и ванадия. В результате температура эффективного растворения снижается, что, в свою очередь, приводит к таким положительным особенностям сталей, легированных хромом, как прокаливаемость, возможность вторичного дисперсионного твердения и теплостойкость. Поэтому стали, легированные хромом, имеют увеличенную эксплуатационную стойкость при тяжёлых условиях своей эксплуатации.
Однако увеличение содержания хрома в стали приводит и к отрицательным последствиям. При его концентрации более 5…10% резко ухудшается карбидная однородность материала, что сопровождается нежелательными явлениями при её механической обработке: даже при нагреве пластичность стали невысока, поэтому при ковке с большими степенями деформации высокохромистые стали подвержены растрескиванию.
При чрезмерном карбидообразовании увеличивается также количество концентраторов напряжений, что негативно влияет на стойкость таких сталей к динамическим нагрузкам. Учитывая это, содержание хрома в сталях не должно превышать 5..6%.
Влияние вольфрама и молибдена
Действие этих легирующих добавок в сталях примерно одинаково, поэтому их рассматривают совместно. Вольфрам и молибден улучшают дисперсионное твердение сталей, что увеличивает их теплостойкость, особенно при длительной работе с повышенными температурами. Мартенситостареющие стали обладают уникальным комплексом свойств: они сочетают достаточную пластичность и вязкость с высокой поверхностной прочностью, а потому находят широкое применение в качестве инструментальных сталей, предназначенных для холодной объёмной штамповки с высокими степенями деформации. Причиной этому – формирование интерметаллидных соединений Fe2W и Fe2Mo3, которые способствуют последующему появлению специальных карбидов (чаще – хрома и ванадия). Поэтому часто, совместно с вольфрамом и молибденом стали легируют также и этими металлами. Примером служат инструментальные стали типа Х4В2М1Ф1, конструкционные 40ХВМФА и т.п.
Наиболее эффективно такое легирование для сталей, содержащих сравнительно большое количество углерода. Именно этим объясняется преимущественное применение сталей, содержащих вольфрам и молибден, для производства ответственных шестерён, валов и других деталей машин, работающих при сложных, резко циклических нагрузках. Наличие рассматриваемых легирующих компонентов улучшает закаливаемость сталей и способствует более устойчивым конечным характеристикам изделий, изготовленных из них.
Имеются и отрицательные стороны избыточного легирования данными металлами. Например, повышение концентрации молибдена более 3% способствует обезуглероживанию стали при нагреве, становится причиной хрупкого разрушения (особенно, если в составе такой стали присутствует в увеличенном — более 2% — количестве кремний). Предельное содержание вольфрама в стали – 10…12% — связано, главным образом, с резким повышением стоимости готового продукта.
Влияние ванадия
Ванадий чаще применяется как компонент сложного легирования. Его наличие придаёт легированным сталям более равномерную и благоприятную структуру, которая мало изменяется даже с термообработкой. Кроме того, ванадий стабилизирует γ-фазу, что увеличивает стойкость стали к напряжениям сдвига (как известно, именно при сдвиговых деформациях металлы имеют наименьшую прочность).
На твёрдость стали ванадий практически не влияет, это особенно заметно для конструкционных сталей, содержащих меньше углерода, чем инструментальные. В комплекснолегированных сталях ванадий увеличивает теплостойкость, что повышает их устойчивость от хрупкого разрушения. В этом смысле влияние ванадия противоположно влиянию молибдена. Особенностью термообработки легированных сталей, содержащих ванадий, считается невозможность выполнения высокого отпуска после закалки, поскольку последующая пластичность стали снижается. Поэтому в сталях, предназначенных для изготовления крупных деталей или поковок, процентное содержание ванадия ограничивается 3..4%.
Влияние кремния, марганца и кобальта
Кремний – единственный из неметаллов, «допущенный» к процессам легирования. Объясняется это двумя факторами – дешевизной элемента и однозначной зависимостью твёрдости от процентного содержания кремния в стали. Именно поэтому кремний часто применяется при выплавке недорогих низколегированных строительных сталей, а также сталей, для эксплуатационной долговечности которых важно оптимальное сочетание прочности и упругости. Чаще всего совместно с кремнием используется и марганец – примерами могут быть стали 09Г2С, 10ГС, 60С2 и т.д.
В инструментальных сталях кремний как легирующий компонент используется редко, и притом только в сочетании с другими металлами, которые нейтрализуют его отрицательные свойства – малую эксплуатационную пластичность и вязкость. Из таких сталей – в частности, 9ХС, 6Х3С и т.п. — изготавливают режущий и штамповый инструмент, для которого требуется сочетание высокой твёрдости и стойкости при резких нагрузках.
Как и кремний, кобальт при внедрении в структуру стали не образует собственных карбидов, зато в сложнолегированных сталях интенсифицирует их образование при отпуске. Поэтому кобальт применяется не самостоятельно, а в сочетании с такими металлами, как ванадий, хром, вольфрам, при этом, ввиду дефицитности кобальта его содержание обычно не превышает 2,5…3%.
Влияние никеля
Никель – единственный из легирующих компонентов сталей, который повышает её пластичность и снижает твёрдость. Поэтому одним никелем стали не легируют. Зато в сочетании с марганцем никель приводит к заметному повышению прокаливаемости стали, что очень важно при изготовлении крупных деталей машин, для которых важна высокая эксплуатационная долговечность. При этом наличие никеля снижает требования к точности соблюдения температурных интервалов термообработки.
Легирование никелем имеет и ряд особенностей. В частности, никель, не образуя собственных карбидов, способствует увеличению скоплений «чужих» карбидов по границам зёрен, в результате снижается теплостойкость, и повышается хрупкость в диапазоне 20…4000С. Поэтому процентное содержание никеля в легированных сталях строго увязывается с наличием в них марганца и хрома: при их наличии предельная концентрация никеля составляет 2%, а при их отсутствии – не более 0,5…1%.
Легированные стали для специальных областей использования содержат в себе и ряд других металлов (например, титан, алюминий и др.). Выбор вида стали диктуется эксплуатационными и финансовыми соображениями.
www.m-deer.ru
Никелевая сталь – Большая Энциклопедия Нефти и Газа, статья, страница 1
Никелевая сталь
Cтраница 1
Никелевые стали отличаются высокой прочностью, значительной пластичностью и вязкостью. Они без затруднения куются, свариваются и вполне доступны всем другим видам обработки металлов. [1]
Никелевые стали весьма чувствительны к высокотемпературной сернистой коррозии. В продуктах сгорания мазута и углей, как известно, имеются окислы серы. При их взаимодействии с никелем образуется сульфид NiS, который в свою очередь образует с никелем легкоплавкий сплав. Ванадий повышает временное сопротивление и предел текучести сталей при высоких температурах. Его добавляют в количестве 0 15 – 0 35 % во многие котельные стали. Используется для легирования котельных сталей совместно с хромом и молибденом. [2]
Никелевые стали ( 13Н2А, 13Н5А) имеют ограниченное распространение. При одних и тех же условиях цементации в никелевых сталях по сравнению с другими сталями получается несколько меньшее содержание углерода в цементованном слое и меньшая глубина слоя, но более плавный переход от цементованного слоя к нецементованному и более равномерное рдспре-деление цементита. [3]
Никелевая сталь, содержащая 12 – 20 % Ni, устойчива против разъедания в органических кислотах и слабых щелочах; никелевая сталь, содержащая 5 % Ni, более устойчива против коррозии в пресной и морской воде, чем углеродистая сталь. [4]
Никелевые стали, главным образом цементуемые, применяют только для ответственных деталей. Распространение никелевых сталей ограничивается дефицитностью никеля, а также тем, что свойства никелевых сталей хуже, чем хромоникелевых. [5]
Никелевые стали характеризуются малой теплопроводностью. [6]
Никелевые стали – искры отличаются маленькими бликами яркобелого цвета. [7]
Никелевые стали свариваются легче хромистых. Никель снижает критическую скорость охлаждения и усиливает закаливаемость. [8]
Никелевые стали, приведенные в табл. 9.26, успешно свариваются различными видами сварки. [10]
Никелевые стали и сплавы имеют высокое сопротивление коррозии в атмосфере воздуха и значительно меньшее в сернистом газе и сероводороде. [11]
Никелевые стали весьма чувствительны к высокотемпературной сернистой коррозии. В продуктах сгорания мазута и углей, как известно, имеются окислы серы. При их взаимодействии с никелем образуется сульфид N18, который в свою очередь образует с никелем легкоплавкий сплав. [12]
Никелевые стали имеют хорошие технологические свойства. Они удовлетворительно штампуются в горячем и холодном состояниях, хорошо свариваются и обрабатываются резанием. После сварки термообработка необязательна. [13]
Никелевые стали также не имели корки, как и углеродистые. Хромомолибденотитановая и хромистые стали покрылись твердой и толстой коркой, которая становилась тоньше по мере увеличения содержания хрома. [14]
Никелевые стали ОН6 и ОН9 содержат 0 1 % С и по хладостойкости приближаются к аустенитным. Оптимальные свойства никелевых сталей обеспечивают термообработкой: двойной нормализацией при 930 С, а затем при 800 С с последующим отпуском при 570 – 590 С или закалкой от 830 С и отпуском при 580 С. Первая нормализация необходима для гомогенизации твердого раствора, вторая с последующим отпуском – для получения структуры мелкозернистого феррита. По сравнению с нормализацией закалка и отпуск увеличивают вязкость стали. Сталь ОН6 используют до – 150 С, а ОН9 – до – 196 С. В структуре термически обработанной стали ОН9 помимо феррита сохраняется 10 – 15 % остаточного аустенита в виде тонких прослоек. Задачей термической обработки, а также дополнительного легирования марганцем ( 1 – 2 %), молибденом ( – 0 4 %), ниобием, хромом, медью в разных сочетаниях является обеспечение устойчивости остаточного аустенита: он не должен превращаться в мартенсит ни при охлаждении, ни при деформировании сталей. [15]
Страницы: 1 2 3 4
www.ngpedia.ru
Нержавеющие хромоникелевые (аустенитные) стали. – www.mpoltd.ru
Нержавеющие стали в составе которых железо, хром и никель – это важнейшая категория специальных конструкционных материалов, которая нашла применение во многих отраслях промышленности. В этой статье речь пойдет об одном из видов нержавеющей стали – хромоникелевых имеющих аустенитную структуру. И немного о свойствах и применении нержавеющей стали 12Х18Н10Т.
Коррозия и ее особенности.
Я заметил, что описывая качества нержавеющих сталей и отмечая их нужность и полезность для промышленности, до сих пор не акцентировал внимание на том почему они так важны. Основное свойство нержавеющих сталей – способность противостоять коррозии, поэтому несколько слов о том, что это такое.
Коррозия – это процесс разрушения поверхности металлов в результате чисто химического или электрохимического воздействия внешней среды, как правило агрессивной. В общем случае коррозия металла сопровождается образованием на поверхности продуктов разрушения, таких как ржавчина, но бывают и разрушения без внешних проявлений. Интенсивность коррозии зависит от свойств металла и степени агрессивности окружающей среды.
Коррозия это довольно широкое понятие и характеризуется по различным проявлениям:
- сплошная (равномерная) коррозия, когда разрушению подвергается вся поверхность металла;
- точечная (местная, щелевая, питтинговая) коррозия, когда разрушаются отдельные участки поверхности металла;
- межкристаллитная коррозия, когда коррозия распространяется в глубь изделия по границам зерен;
- коррозия под напряжением (коррозионное растрескивание), когда на поверхности металла развиваются трещины вследствие одновременного воздействия растягивающих напряжений и агрессивной среды.
Отдельный вид – электрохимическая коррозия, когда к чисто химическим процессам взаимодействия металла и окружающей среды, добавляются электрохимические процессы на границе раздела. Это самый разрушительный вид коррозии.
В процессе электрохимической коррозии разрушение металлов происходит под воздействием электролитов и сопровождается переходом атомов. На практике чаще всего электролитами выступают водные растворы солей, кислот и щелочей. Таким образом интенсивному разрушению электрохимической коррозией подвергаются металлические емкости, трубопроводы, детали машин и части сооружений находящиеся в контакте с морской и речной водой, а также грунтовыми водами.
Из теории электрохимической коррозии следует, что наибольшую устойчивость имеют очень чистые металлы. Но в жизни использование чистых металлов практически невозможно, поэтому возникает необходимость обеспечения однородной структуры твердого раствора в сплавах.
Повышенная стойкость против равномерной коррозии в широкой гамме коррозионно-активных сред различной степени агрессивности – отличительная особенность нержавеющих сталей и сплавов. Многие виды нержавеющие стали кроме того обладают стойкостью против межкристаллитной и точечной коррозии и коррозионного растрескивания.
Общее о хромоникелевых нержавеющих сталях.
Основные легирующие элементы, придающие хромоникелевой стали коррозионную стойкость в окислительных средах это Cr (хром) и Ni (никель). Хром способствует образованию на поверхности нержавеющей стали защитной плотной пассивной пленки окисла Сr2O3. Необходимая для придания коррозионной стойкости нержавеющей стали концентрация хрома в сталях этой группы составляет 18%.
Никель относится к металлам находящимся или легко переходящим в так называемое “пассивное” состояние. В пассивным состоянии металл или сплав обладает повышенной коррозионной стойкостью в агрессивной среде. Хотя, конечно, эта способность никеля меньше чем у хрома или молибдена.
Хром и железо в сплаве образуют твердый раствор, а никель в количестве 9—12%, кроме того, способствует формированию аустенитной структуры. Благодаря аустенитной структуре хромоникелевые нержавеющие стали отличаются высокой технологичностью при горячей и холодной деформациях и стойкостью при низких температурах.
Хромоникелевые аустенитные нержавеющие стали наиболее широко распространенная группа коррозионностойких сталей. Они так же известны в мировой практике под общим названием сталей типа 18-10.
В нашей стране наиболее распространены марки хромоникелевых нержавеющих сталей: 12Х18Н10Т, 08Х18Н10Т (ЭИ914), 08Х18Н10, 12Х18Н9Т, 03Х18Н11, 12Х18Н12Т, 08Х18Н12Б (ЭИ402), 02Х18Н11, 03Х19АГ3Н10.
Эти нержавеющие стали обладают коррозионной стойкостью во многих окисляющих средах при различной концентрации и в широком диапазоне температур. Они так же обладают жаростойкостью и жаропрочностью, но при умеренных температурах.
Стойкость нержавеющей стали против межкристаллитной коррозии
Способность сопротивляться межкристаллитной коррозии у хромоникелевых аустенитных нержавеющих сталей в первую очередь зависит от содержания углерода в твердом растворе. Углерод способствует выделению в твердом растворе карбидных фаз, тем самым способствую ускорению проявления межкристаллитной коррозии с повышением температуры.
Хромоникелевые аустенитные нержавеющие стали при выдержке в интервале 750-800 ºС теряют способность сопротивляться межкристаллитной коррозии:
- при содержании углерода 0,084 % — в течение 1 минуты;
- при содержании углерода 0,054 % — в течение 10 минут;
- при содержании углерода 0,021 5 – через более чем 100 минут.
Содержание азота в составе хромоникелевых аустенитных нержавеющих сталей так же оказывают влияние на склонность к межкристаллитной коррозии, но в значительно меньшей степени. наличие азота в составе может быть даже полезно для повышения прочности.
Повышение концентрации никеля в составе хромоникелевых аустенитных нержавеющих сталей способствует снижению растворимости углерода, но отрицательно влияет на ударную вязкость хромоникелевой стали после отпуска и способствует межкристаллитной коррозии.
Растворимость углерода в твердом растворе хромоникелевых аустенитных нержавеющих сталей происходит и при увеличении содержания хрома. В этом случае так же происходит снижение ударной вязкости стали, но при этом стойкость против межкристаллитной коррозии возрастает.
Закалка аустенитных хромоникелевых сталей.
Углерод в составе аустенитных хромоникелевых нержавеющих сталей без добавок титана и ниобия влияет на температуру закалки стали. При закалке требуется произвести нагрев стали выше температуры растворения карбидов хрома, последующее быстрое охлаждение предназначено фиксировать однородность твердого раствора. Таким образом при увеличении содержания углерода требуется большая температура нагрева под закалку. В целом интервал температуры нагрева при закалке аустенитных хромоникелевых нержавеющих сталей составляет от 900 до 1100 ºС.
Длительная выдержка аустенитных хромоникелевых нержавеющих сталей при достижении температуры закалки не требуется. Для листовой нержавеющей стали общее время нагрева до 1000-1050 ºС и выдержки составляет 1-3 минуты на 1 мм толщины листа.
А вот охлаждение должно быть быстрым. Для аустенитных хромоникелевых нержавеющих сталей с содержанием углерода более 0,03 %, относящихся к “нестабилизированным” применяют охлаждение в воде. Нержавеющие стали с меньшим содержанием углерода и имеющие небольшие сечения можно охлаждать на воздухе.
Нержавеющая сталь 12Х18Н10Т применение, свойства.
Сталь 12Х18Н10Т отличный пример хромоникелевой аустенитной нержавеющей стали, широко применяемой при производстве сварных конструкций. Она может работать в контакте с азотной кислотой и другими сильными окислителями; в некоторых органических кислотах средней концентрации, органических растворителях, атмосферных условиях и т.д. Это емкости, теплообменники, а так же сварные конструкций в криогенной технике (до —269 °С).
Примеры использования нержавеющей стали 12Х18Н10Т:
- прокат кованый круглый, квадратный, шестигранный
- лист толстый;
- лист тонкий;
- лента холоднокатаная;
- трубы бесшовные горячедеформированные;
- трубы бесшовные холодно- и теплодеформированные;
- проволока;
- профили стальные фасонные.
Коррозионная стойкость нержавеющей стали 12Х18Н10Т против межкристаллитной коррозии определяется при испытании по методам AM и АМУ ГОСТ 6032-89 с продолжительностью выдержки в контрольном растворе соответственно 24 и 8 ч. Испытания проводят после провоцирующего нагрева при 650 °С в течение 1 ч.
При непрерывной работе нержавеющая сталь 12Х18Н10Т устойчива против окисления на воздухе и в атмосфере продуктов сгорания топлива при температуре до 900 °С. Нержавеющая сталь 12Х18Н10Т обладает достаточно высокой жаростойкостью при температурах 600-800 °С.
Нержавеющая сталь 12Х18Н10Т обладая хорошей технологичностью может подвергаться значительным пластическим деформациями. Температурный интервал обработки нержавеющей стали 12Х18Н10Т давлением составляет 1180-850 °С, скорость нагрева и охлаждения не лимитируется. В холодном состоянии допускают высокие степени пластической деформации.
Сварка нержавеющей стали 12Х18Н10Т
Основной проблемой при сварке аустенитных нержавеющих сталей является прокаливание, которое вызывает в них структурные изменения, приводящие к снижению стойкости против межкристаллитной коррозии.
Для снижения подобных рисков в состав хромоникелевых нержавеющих сталей вводят титан или ниобий. Легированные титаном нержавеющие стали хорошо свариваются, при условии исключения последующей термообработки.
Хромоникелевая нержавеющая сталь 12Х18Н10Т хорошо сваривается всеми видами ручной и автоматической сварки. Электросварку можно производить контактной сваркой, сваркой неплавящимся вольфрамовым электродом в защитной среде аргона, полуавтоматической сваркой в защитной среде из смеси аргона с углекислым газом, сваркой отдельными, покрытыми электронами.
Для обычной автоматической сварки под флюсами АН-26, АН-18 и аргонодуговой сварки используют специальную проволоку для сварки “нержавейки”, например Св-08Х19Н10Б, Св-04Х22Н10БТ, Св-05Х20Н9ФБС и Св-06Х21Н7БТ.
Для ручной сварки нержавеющей стали используют электроды для “нержавейки” типа ЭА-1Ф2 марок ГЛ-2, ЦЛ-2Б2, ЭА-606/11 с проволокой Св-05Х19Н9ФЗС2, Св-08Х19Н9Ф2С2 и Св-05Х19Н9ФЗС2. Это обеспечивает стойкость шва против межкристаллитной коррозии. Сварочные электроды для “нержавейки” обычно короче, чем электроды для обычной стали, так как их электрическое сопротивление выше.
Так же возможно сваривание деталей из нержавеющей стали и обычной стали, но в этом случае необходимо использовать т.н. “переходные” электроды. В этом случае требуется, чтобы металл сварочного шва был из нержавейки, поэтому и используются переходные электроды, содержащие повышенное содержание легирующих элементов.
Особую маркировку имеют сварочные электроды, предназначенные для сварки нержавеющей стали, предназначенной для использования в пищевой промышленности. Применение правильных сварочных материалов обеспечивает сохранность высоких коррозионных свойств как против общей, так и межкристаллитной коррозии.
Приглашаем к сотрудничеству
www.mpoltd.ru
Легирующие элементы в стали
Легированные стали — это углеродистые стали, содержащие менее 1% углерода, однако с добавками других металлов в количествах достаточных, чтобы существенио изменить свойства стали. Наиболее важные легирующие элементы
Алюминий Вплоть до 1% алюминия в легированных сталях позволяет им, в процессе азотирования образовать более твердый, износоустойчивый наружный слой.
Хром. Присутствие небольшого количества хрома стабилизирует структуру твердых карбидов. Это улучшает отклик стали на термообработку. Присутствие большого количества хрома улучшает коррозионную стойкость и термостойкость стали (например, нержавеющая сталь). К сожалению, присутствие хрома в стали приводит к росту зернистости (см. никель).
Кобальт. Кобальт повышает критическую скорость закалки стали при tермобработке. Это позволяет инструментальным сталям работать при высоких температурах без разупрочнения (смягчающего отпуска). Кобальт — важный легирующий элемент в некоторых быстрорежущих (инструментальных) сталях
Медь. Вплоть до 0,5 % содержания меди улучшает коррозионную стойкость легированных сталей.
Свинец. Присутствие вплоть до 0,2 % свинца улучшает обрабатываемость сталей, однако за счет уменьшения прочности и вязкости.
Марганец. Этот легирующий элемент всегда присутствует в сталях до максимального содержания 1,5 % для нейтрализации вредного влияния примесей, остающихся после процессов её удаления. Он также способствует формированию устойчивых карбидов в подвергающихся закалке сталях. В больши количествах (вплоть до 12,5 %) марганец улучшает износоустойчивость сталей самопроизвольно формируя твердый наружный слой под воздействием истирания (самозакалка).
Молибден. Этот легирующий элемент поднимает сопротивление ползучести сталей при высоких температурах; стабилизирует в них карбиды; улучшает характеристики режущих инструментов при высоких температурах и уменьшает восприимчивость хромоникелевых сталей к «отпускной хрупкости».
Никель. Присутствие никеля в легированных сталях способствует увеличению прочности и улучшению структуры. Он также улучшает коррознонную стойкость стали. К сожалению, никель имеет склонность разупрочнять сталь графитизируя любые присутсвующие карбиды. Так как никель и хром обладают противоположными свойствами, их часто используют в сочетании (хромо-никелевые стали). Их преимущества дополняют друг друга, в то время как их нежелательные воздействия взаимно уравновешиваются.
Фосфор. Это остаточный элемент после процессов удаления. Он может стать причиной непрочности стали, и обычно стремятся уменьшить его присутствие до уровня ниже 0,05 %. Тем не менее фосфор способен улучшить обрабатываемость, действуя как внутренняя смазка. В больших количествах он также улучшает текучесть литых сталей и чугуна.
Кремний. Присутствие кремния вплоть до 0,3 % улучшает текучесть литых сталей и чугунов, причем в отличие от фосфора без снижения прочности. Вплоть до 1% кремния улучшает термостойкость сталей. К сожалению, как и никель, фосфор — сильный графитизирующий элемент, и его никогда не добавляют в больших количествах в высокоуглеродистые стали. Кремний используется для улучшения магнитных свойств магнитно-мягких материалов, тех, которые используются для пластин трансформаторов и штампованных листов для изготовления статоров и роторов электромотора.
Сера. Сера также является остаточным элементом после процессов удаления. Ее присутствие сильно ослабляет сталь, и используются все возможности для ее удаления; кроме того, марганец всегда присутствует в сталях, чтобы сводить к нулю влияние остаточной серы. Однако сера иногда преднамеренно добавляется в низкоуглеродистые стали для улучшения их обрабатываемости, в тех случаях, когда допустимо уменьшение прочности компоненты (сульфидированные легкообрабатываемые (автоматные) стали).
Вольфрам. Присутствие вольфрама в легированных сталях способствует формированию очень твердых карбидов и, так же как и присутствие кобальта, повышает критическую скорость закалки стали при термообработке. Это позволяет вольфрамовым сталям (быстрорежущим сталям) сохранять свою твердость при высоких температурах. Вольфрамовые сплавы составляют основу высокопроизводительных инструментов и штамповой стали.
Ванадий. Этот элемент усиливает влияние других присутствующих легирующих элементов и сам оказывает на легированные стали множество самых разнообразных воздействий:
1. Его присутствие способствует формированию твердых карбидов.
2. Он стабилизирует мартенсит в закаленных сталях и таким образом улучшает прокаливаемость и увеличивает предельное критическое сечение стали.
3. Он уменьшает рост зернистости при термообработке и процессах горячей обработки.
4. Он увеличивает «твердость при высоких температурах» инструментальных сталей и игтамповой стали.
5. Он улучшает усталостную прочность сталей
- Модификация AD атрибутов >>
www.abakbot.ru
Нержавеющие стали. Особенности и технические характеристики
Нержавеющие стали объединяет общая черта — содержание хрома, никеля, молибдена, титана. Механические и эксплуатационные свойства различных типов коррозионностойких сталей зависят в первую очередь от их состава и регламентируются ГОСТ5582-75. Правильный выбор марки гарантирует длительный и успешный срок службы изделия.
Категории и технические характеристики
Постоянное увеличение использования нержавеющей стали во многих отраслях промышленности связано с ее уникальными характеристиками:
- высокое сопротивление коррозии,
- высокая прочность,
- хорошая свариваемость,
- прекрасная перерабатываемость холодной штамповкой.
Существует пять основных категорий нержавеющей стали на основании их микроструктуры: Аустенитные (Austenitic), Ферритные (Ferritic), Дуплексные, Мартенситные (Martensitic), Жаропрочные.
Аустенитные — не магнитные и в дополнение к хрому содержат никель, который увеличивает сопротивление коррозии. Аустенитные нержавеющие стали — наиболее широко используемая группа нержавеющих сталей. С повышенным содержанием хрома до 20 % — 25 % и никеля до 10 % — 20 %, аустенитные нержавеющие стали лучше сопротивляются окислению при высоких температурах и могут использоваться для изготовления элементов печей, подвергающихся высокотемпературному нагреву.
- Ферритные — магнитные, имеют низкое содержание углерода и хром как главный элемент, обычно на уровне 13 % — 17 %.
- Дуплексные нержавеющие стали имеют смешанную, ферритно-аустенитную структуру. Содержание хрома изменяется от 18 % до 28 %, а никеля от 4,5 % до 8 %. Дуплексные сорта находят свое применение в в агрессивных хлорсодержащих средах,
- Мартенситные сорта магнитные, содержат обычно 12 % хрома и среднее содержание углерода. Они прочняются, закалкой и отпуском подобно простым углеродистым сталям, и находят поэтому применение главным образом в изготовлении столовых приборов, режущих инструментов и общем машиностроении.
- Жаропрочные стали имеют содержание хрома обычно 17 % с добавлением никеля, меди и ниобия. Поскольку эти стали могут быть упрочнены и хорошо сопротивляются процессу старения, они идеальны для шахтных насосов, шпинделей клапанов и для космической техники.
- Аустенитные и ферритные сорта составляют приблизительно 95% используемых нержавеющих сталей. Из ферритных марок наиболее широко используется марка 430, т.н. «безникелевые» нержавейки. Они имеют хорошие прочностные и механические характеристики, что обеспечивается высоким содержанием хрома и низким содержанием углерода, и низкую себестоимость по сравнению с хромо-никелевыми нержавейками.
Среди аустенитных марок широкое распространение получила марка 304, которая является наиболее универсальной и широко используемой из всех марок нержавеющих сталей. Её ещё обозначают 18-10 (пищевая).
В последние годы стали 300-й серии постепенно уступают позиции экономически более эффективным аустенитным сталям серии 200, в которых дорогостоящий никель частично заменен на марганец и азот.
Эти марки нержавеющих сталей активно производятся и предлагаются на рынке индийскими предприятиями. Ведь именно им отдается первенство в разработке этих марок.
Механические свойства нержавеющих сталей позволяют снизить толщины используемых материалов, таким образом сокращая материалоемкость без снижения прочностных характеристик. Аустенитные и Дуплексные сорта не теряют прочности и при низких температурах, и позволяют использовать меньшие толщины по сравнению с углеродистыми сталями, достигая существенной экономии.
Предлагаемые рынком листы могут иметь следующие типы поверхностей:
- матовая;
- матовое зеркало;
- зеркало;
- шлифованная;
- мелкая шлифовка;
- покрытие защитной пленкой.
Применение нержавеющих сталей в бытовой технике
Уникальность поверхности нержавеющей стали в её плотности, она не имеет пор и микротрещин для проникновения грязи или бактерий. Простота ухода и очищения, её экологическая нейтральность и стойкость к воздействию агрессивных веществ по сравнению с другими материалами делает её незаменимой для изготовления бытовых плит и другой кухонной техники. Важным фактором является хорошая и гладкая (без изломов, неровностей и царапин) поверхность металла.
Уже сейчас существуют и, определенно, будут ужесточены в будущем строгие ограничения на растворимость тяжелых металлов, имеющихся в материале, из которого изготовлено оборудование, находящееся в контакте с пищевыми продуктами. Согласно европейским нормам, количество хрома и никеля, растворенного из стали в ходе стандартного теста по ISO 6486/1, допускается не выше 2 мг/дм2. Для аустенитных сталей количество растворенных никеля и хрома меньше чем 0,02 мг/дм2, т.е. около 1% от допустимого значения.
К пищевым коррозионно-стойким сталям относят следующие марки
Марка стали по ГОСТ 5632-72 | Аналог по ASTM А240/А 240М-05а |
08Х18h20 | 304 |
08Х18Н10Т | 321 |
12Х18Н10Е (Т) | 303 |
Цвета побежалости сталей
Железные сплавы, в том числе и коррозионностойкие, при нагревании покрываются тонкой пленкой железных окислов самых разнообразных цветных оттенков и появляются цвета побежалости, которые соотносятся с определенными температурами нагрева. Есть сплавы, так называемые «жаропрочные», у которых температура начала образования окислов выше, чем у других сплавов, однако такие марки не относятся к пищевым и очень дороги по причине высокого содержания никеля.
Для углеродистой стали
Температура нагрева | Цвет побежалости |
220 | светло-желтый |
240 | темно-желтый |
255 | коричнево-желтый |
265 | коричнево-красный |
275 | пурпурно-красный |
285 | фиолетовый |
295 | васильково-синий |
315 | светло-синий |
330 | серый |
Для нержавеющих сталей
Температура | 12Х18Н9Т | ХН75МБТЮ |
300 | светло-соломенный | — |
400 | соломенный | светло-желтый |
500 | красновато-коричневый | желтый |
600 | фиолетово-синий | коричневый |
650 | синий | синий |
750 | — | голубой |
Главное же, существенное влияние на цвет поверхности оказывает продолжительность нагрева. И действительно, более или менее продолжительной обработкой можно вызвать посинение стали при температуре более низкой, чем необходимой для появления даже соломенно-желтого цвета.
Заводы-изготовители нержавеющих сталей
В настоящий момент для потребителей и продавцов нержавеющим прокатом есть фактически три источника поставок: коррозионностойкая сталь российского производства, высококачественный металл от европейских и южно-американских производителей и прокат из Индии и Юго-Восточной Азии.
В связи с нестабильностью цен на никель в настоящее время производители переориентируются на отличные от 300-й серии марки стали. Для КНР это в первую очередь ферритные стали, не содержащие никель вовсе, для Индии и коммерческих предприятий в Китае — 200-я серия с пониженным содержанием никеля и дополнительными присадками, снижающими твердость сплава и повышающими его коррозионно-стойкие свойства.
В настоящее время рынок между сериями сталей поделен неравномерно. Наиболее широко традиционно применяется самая дорогостоящая 300-я серия (такие марки, как AISI 304, AISI 316, AISI 321, AISI 310 S, AISI 309 S и другие), наиболее ограничено применение малознакомой отечественному производителю 200-й серии. Сталь марок этой серии за последние годы в результате исследований и экспериментов претерпела значительные изменения в химии и технологическом процессе прокатки и в настоящий момент заслуживает более пристального внимания. Стали 200 группы дешевле AISI 304 приблизительно на 16-17% . Еще дешевле сталь AISI 430 (безникелевая) — порядка 50% по отношению к AISI 304. С ростом цен на никель эта разница может возрастать еще больше. Однако применение этой марки стали до сих пор остается спорным по отношению к пищевым продуктам и в медицинской технике.
Заводы-изготовители России
- Челябинский металлургический завод»,
- Волгоградский металлургический завод Красный Октябрь»,
- Ижорские заводы
Заводы-изготовители Европы
- Acerinox, S.A. Испания,
- Marcegaglia S.p.A, Италия,
- Arcelor Stainless Int. Франция,
- Outokumpu Stainless, Финляндия,
- ThyssenKrupp, Германия.
Юго-Восточная Азия
- Jindal Stainless, Индия,
- Zhejiang Baocheng Stainless Steel Manufacture Co., Ltd. Китай,
- Jiangsu Xi’erfa Group Co., Ltd.Китай,
- YUSCO(Yieh United Steel Corp.) Тайвань,
- NISCO (Taiyuan Iron & Steel Group) Company Ltd , Китай
engitime.ru