Сообщение про сплав – Сплавы, их классификация и свойства
alexxlab | 16.03.2020 | 0 | Вопросы и ответы
Доклад: Сплавы
В качестве нагревательных, элементов успешно служат сплавы хрома с никелем – нихромы. Добавка к хромоникелевым сплавам кобальта и молибдена предаёт металлу способность переносить большие нагрузки. Из этих сплавов делают, например, лопатки газовых турбин. Сплав кобальта, молибдена и хрома (“комохром”) безвреден для человеческого организма и поэтому используется в восстановительной хирургии. Недавно созданы новые материалы основу которых составляют соединения марганца, хрома и сурьмы, которые найдут применение в различных автоматических устройствах и смогут заменить более дорогие термоэлементы. Основная часть добываемой в мире хромистой руды поступает сегодня на ферросплавные заводы, где выплавляются различные сорта феррохрома и металлического хрома.
Марганцевые сплавы
В современной технике применяют большое число манганинов — сплавов марганца, меда и никеля, обладающих высоким электрических сопротивлением, практически не зависящим от температуры. Манганины обладают ещё одним ценным свойством – способностью поглощать энергию колебаний. В кузнечных, штамповочных металлообрабатывающих цехах с помощью этих сплавов можно значительно уменьшить вредные производственные шумы. Марганцевая бронза – сплав марганца с медью – может намагничиваться, хотя ни тот, ни другой компонент в отдельности не проявляет магнитных свойств.
С одним из соединений марганца – перманганатом калия, или, попросту говоря, “марганцовкой’, – мы познакомились ещё в детстве.
Бериллиевые сплавы
Широкое применение в авиации находят сплавы меди с бериллием – бериллиевые бронзы. Из них изготавливают многие изделия, от которых требуются большая прочность, хорошая сопротивляемость усталости н коррозии, сохранение упругости в значительном интервале температур, высокая электро- и теплопроводность. Благодаря, своим упругим свойствам бериллиевая бронза служит прекрасным пружинным материалом. Пружины из такой бронзы практически не знают усталости; они способны выдерживать до 20 миллионов циклов нагрузки!
Большое будущее принадлежит, по-видимому, сплавам бериллия с литием. Союз этих двух легчайших металлов приведёт , быть может, к созданию сплавов, не тонущих в воде.
Магниевые сплавы
Возможно вы искали – Шпаргалка: Табличные значения наиболее распространенных газов
Магний – очень легкий серебристо-белый металл. Его лёгкость могла бы сделать этот металл прекрасным конструкционным материалом. Но, увы, чистый магний – мягок и непрочен. Поэтому конструкторы вынуждены использовать сплавы магния с другими металлами. Особенно широко применяют сплавы магния с алюминием, цинком и марганцем. Каждым из компонентов этого содружества вносит свой “пай” в общие свойства: алюминий и цинк увеличивают прочность сплава, марганец повышает его антикоррозионные свойства. Ну, а магний? Магний придаёт сплаву лёгкость – детали из магниевого сплава на 20-30% легче алюминиевых и на 50-75% легче чугунных и стальных. Сплавы этого элемента все чаще “приглашаются на работу” в автомобилестроение, текстильную промышленность, полиграфию.
У магниевых сплавов есть много друзей, которые, повышают их жаростойкость и пластичность, снижают их окисляемость. Это, например, литий, бериллий, кальций, церий, кадмий, титан. Но есть, к сожалению, и враги – железо, кремний, никель; они ухудшают механические свойства сплавов, уменьшают сопротивляемость их коррозии. Широкое применение магниевые сплавы находят в самолётостроении.
Медные сплавы
Постоянно увеличивается число медных сплавов, используемых в различных отраслях промышленности. Если каких-нибудь 38-40 лет назад бронзой называли только сплавы меди с оловом, то сегодня уже известны алюминиевые, свинцовые, кремниевые, марганцевые, бериллиевые, кадмиевые, хромовые, циркониевые бронзы.
113 алюминиевой бронзы (сплав меди примерно с 5% алюминия) делают, в частности, медные монеты.
Большую группу сплавов на основе меди составляют латуни, В последнее время в некоторых областях техника медь и её сплавы заменяют другими металлами, прежде всего алюминием.
Оловянные сплавы
Похожий материал – Шпаргалка: Вопросы по естествознанию
Олово входит в состав различных бронз, типографских сплавов, баббитов (подшипниковых сплавов, обладающих способностью хорошо сопротивляться истиранию).
Широко используют в технике и химические соединения олова
Танталовые сплавы
Очень важная область применения тантала – производство жаропрочных сплавов, в которых всё. больше и больше нуждается ракетная а космическая техника. Карбид тантала отличается очень высокой твёрдостью (близкой к твёрдости алмаза), благодаря которой он широко применяется в производстве твёрдых сплавов. При скоростном резании металл настолько разогревается, что стружка приваривается к режущему инструменту – кромка его выкрашивается, ломается. Резцам, изготовленным из твёрдых сплавов на основе карбида тантала, выкрашивание не грозит, и они служат весьма продолжительный срок.
Алюминиевье сплавы
Первые сплав алюминия с медью, магнием, марганцем был создан в 1911 году, который получил название дуралюмина. В 1919 году появились первые самолёта из дуралюмина. С тех пор алюминий навсегда связал свою судьбу с авиацией. Он по праву заслужил репутацию “крылатого металла”.
В нашей стране производством алюминиевых сплавов занимался тогда лишь Кольчугинский завод по обработке цветных металлов, который выпускал в небольших количествах кольчуга-люминий – сплав, по составу и свойствам сходный с дуралюмином. Сейчас в нашем стране уже многие предприятия выпускают “крылатый металл”, но нужда в нём продолжает расти. Из алюминиевых сплавов была изготовлена оболочка первого советского искусственного спутника Земли.
Очень интересно – Шпаргалка: Шпаргалка по курсу естествознания
Титановые сплавы.
Не так давно учёные создали удивительный сплав никеля с титаном – “нитинол”, который обладает загадочным свойством “помнить” своё прошлое, а точнее говоря, принимать после деформаций и соответствующе! обработки свою прежнюю форму. Сегодня металлургия – один из основных потребителем титана. Можно насчитать сотни марок сталей и сплавов, в состав которых в том или ином количестве входит этот элемент. В нержавеющие стали его вводят для предотвращения межкристаллитной коррозии. В жаростойких высокохромистых сплавах он уменьшает размер зерна, делая структуру металла однородной и мелкокристаллической. В других жаростойких сплавах титан служит упрочняющим элементом.
Кобальтовые сплавы
Кобальтовые сплавы широко применяются в металлообрабатывающей промышленности. Один из лучших стеллитов – так были названы новые сплавы – содержал более 50% кобальта. Производство твёрдых сплавов неуклонно растёт и кобальт играет в них не последнюю роль.
Советскими учёными и инженерами разработан сверхтвёрдый сплав , превосходящий по своим качествам аналогичные зарубежные сплавы. В состав, наряду с карбидом вольфрама, входит кобальт.
В ряде случаев кобальт выступает в союзе с платиной. Из него изготавливают миниатюрные магнитные детали для электрических часов, слуховых аппаратов, датчиков различного назначения.
Вам будет интересно – Шпаргалка: Программа вступительных экзаменов по биологии в 2004г. (МГУ)
Кобальтохромовый сплав оказался прекрасным материалом для каркасов зубных протезов: он вдвое прочнее золота, обычно используемого для этой цели и значительно дешевле.
Никелевые сплавы
Важное “занятие” никеля – создание разнообразных сплавов с другими металлами. Учёным удалось получить медноникелевые сплавы, весьма сходные с серебром.
Спустя некоторое время появились мельхиор, альфенад и другие заменители серебра, в состав которых непременно входил никель. Никелевые сплавы быстро завоевали популярность и вошёл в обиход.
Монель-металл, например, успешно трудится в химическом машиностроении, в судостроении. Нихромовые спирали используют в нагревательных приборах, в электропечах сопротивления.
Упругий сплав элинвар – отличный материал для пружин, в частности часовых.
Похожий материал – Шпаргалка: Паразиты, глисты, простейшие, членистоногие
cwetochki.ru
Доклад: Сплавы
Хромовые сплавы
В качестве нагревательных, элементов успешно служат сплавы хрома с никелем – нихромы. Добавка к хромоникелевым сплавам кобальта и молибдена предаёт металлу способность переносить большие нагрузки. Из этих сплавов делают, например, лопатки газовых турбин. Сплав кобальта, молибдена и хрома (“комохром”) безвреден для человеческого организма и поэтому используется в восстановительной хирургии. Недавно созданы новые материалы основу которых составляют соединения марганца, хрома и сурьмы, которые найдут применение в различных автоматических устройствах и смогут заменить более дорогие термоэлементы. Основная часть добываемой в мире хромистой руды поступает сегодня на ферросплавные заводы, где выплавляются различные сорта феррохрома и металлического хрома.
Марганцевые сплавы
В современной технике применяют большое число манганинов — сплавов марганца, меда и никеля, обладающих высоким электрических сопротивлением, практически не зависящим от температуры. Манганины обладают ещё одним ценным свойством – способностью поглощать энергию колебаний. В кузнечных, штамповочных металлообрабатывающих цехах с помощью этих сплавов можно значительно уменьшить вредные производственные шумы. Марганцевая бронза – сплав марганца с медью – может намагничиваться, хотя ни тот, ни другой компонент в отдельности не проявляет магнитных свойств.
С одним из соединений марганца – перманганатом калия, или, попросту говоря, “марганцовкой’, – мы познакомились ещё в детстве.
Бериллиевые сплавы
Широкое применение в авиации находят сплавы меди с бериллием – бериллиевые бронзы. Из них изготавливают многие изделия, от которых требуются большая прочность, хорошая сопротивляемость усталости н коррозии, сохранение упругости в значительном интервале температур, высокая электро- и теплопроводность. Благодаря, своим упругим свойствам бериллиевая бронза служит прекрасным пружинным материалом. Пружины из такой бронзы практически не знают усталости; они способны выдерживать до 20 миллионов циклов нагрузки!
Большое будущее принадлежит, по-видимому, сплавам бериллия с литием. Союз этих двух легчайших металлов приведёт , быть может, к созданию сплавов, не тонущих в воде.
Магниевые сплавы
Магний – очень легкий серебристо-белый металл. Его лёгкость могла бы сделать этот металл прекрасным конструкционным материалом. Но, увы, чистый магний – мягок и непрочен. Поэтому конструкторы вынуждены использовать сплавы магния с другими металлами. Особенно широко применяют сплавы магния с алюминием, цинком и марганцем. Каждым из компонентов этого содружества вносит свой “пай” в общие свойства: алюминий и цинк увеличивают прочность сплава, марганец повышает его антикоррозионные свойства. Ну, а магний? Магний придаёт сплаву лёгкость – детали из магниевого сплава на 20-30% легче алюминиевых и на 50-75% легче чугунных и стальных. Сплавы этого элемента все чаще “приглашаются на работу” в автомобилестроение, текстильную промышленность, полиграфию.
У магниевых сплавов есть много друзей, которые, повышают их жаростойкость и пластичность, снижают их окисляемость. Это, например, литий, бериллий, кальций, церий, кадмий, титан. Но есть, к сожалению, и враги – железо, кремний, никель; они ухудшают механические свойства сплавов, уменьшают сопротивляемость их коррозии. Широкое применение магниевые сплавы находят в самолётостроении.
Медные сплавы
Постоянно увеличивается число медных сплавов, используемых в различных отраслях промышленности. Если каких-нибудь 38-40 лет назад бронзой называли только сплавы меди с оловом, то сегодня уже известны алюминиевые, свинцовые, кремниевые, марганцевые, бериллиевые, кадмиевые, хромовые, циркониевые бронзы.
113 алюминиевой бронзы (сплав меди примерно с 5% алюминия) делают, в частности, медные монеты.
Большую группу сплавов на основе меди составляют латуни, В последнее время в некоторых областях техника медь и её сплавы заменяют другими металлами, прежде всего алюминием.
Оловянные сплавы
Олово входит в состав различных бронз, типографских сплавов, баббитов (подшипниковых сплавов, обладающих способностью хорошо сопротивляться истиранию).
Широко используют в технике и химические соединения олова
Танталовые сплавы
Очень важная область применения тантала – производство жаропрочных сплавов, в которых всё. больше и больше нуждается ракетная а космическая техника. Карбид тантала отличается очень высокой твёрдостью (близкой к твёрдости алмаза), благодаря которой он широко применяется в производстве твёрдых сплавов. При скоростном резании металл настолько разогревается, что стружка приваривается к режущему инструменту – кромка его выкрашивается, ломается. Резцам, изготовленным из твёрдых сплавов на основе карбида тантала, выкрашивание не грозит, и они служат весьма продолжительный срок.
Алюминиевье сплавы
Первые сплав алюминия с медью, магнием, марганцем был создан в 1911 году, который получил название дуралюмина. В 1919 году появились первые самолёта из дуралюмина. С тех пор алюминий навсегда связал свою судьбу с авиацией. Он по праву заслужил репутацию “крылатого металла”.
В нашей стране производством алюминиевых сплавов занимался тогда лишь Кольчугинский завод по обработке цветных металлов, который выпускал в небольших количествах кольчуга-люминий – сплав, по составу и свойствам сходный с дуралюмином. Сейчас в нашем стране уже многие предприятия выпускают “крылатый металл”, но нужда в нём продолжает расти. Из алюминиевых сплавов была изготовлена оболочка первого советского искусственного спутника Земли.
Из них делают различные детали космической аппаратуры – кронштейны, крепления, шасси, футляры и корпуса для многих инструментов и приборов.
Титановые сплавы.
Не так давно учёные создали удивительный сплав никеля с титаном – “нитинол”, который обладает загадочным свойством “помнить” своё прошлое, а точнее говоря, принимать после деформаций и соответствующе! обработки свою прежнюю форму. Сегодня металлургия – один из основных потребителем титана. Можно насчитать сотни марок сталей и сплавов, в состав которых в том или ином количестве входит этот элемент. В нержавеющие стали его вводят для предотвращения межкристаллитной коррозии. В жаростойких высокохромистых сплавах он уменьшает размер зерна, делая структуру металла однородной и мелкокристаллической. В других жаростойких сплавах титан служит упрочняющим элементом.
Кобальтовые сплавы
Кобальтовые сплавы широко применяются в металлообрабатывающей промышленности. Один из лучших стеллитов – так были названы новые сплавы – содержал более 50% кобальта. Производство твёрдых сплавов неуклонно растёт и кобальт играет в них не последнюю роль.
Советскими учёными и инженерами разработан сверхтвёрдый сплав , превосходящий по своим качествам аналогичные зарубежные сплавы. В состав, наряду с карбидом вольфрама, входит кобальт.
В ряде случаев кобальт выступает в союзе с платиной. Из него изготавливают миниатюрные магнитные детали для электрических часов, слуховых аппаратов, датчиков различного назначения.
Кобальтохромовый сплав оказался прекрасным материалом для каркасов зубных протезов: он вдвое прочнее золота, обычно используемого для этой цели и значительно дешевле.
Никелевые сплавы
Важное “занятие” никеля – создание разнообразных сплавов с другими металлами. Учёным удалось получить медноникелевые сплавы, весьма сходные с серебром.
Спустя некоторое время появились мельхиор, альфенад и другие заменители серебра, в состав которых непременно входил никель. Никелевые сплавы быстро завоевали популярность и вошёл в обиход.
Монель-металл, например, успешно трудится в химическом машиностроении, в судостроении. Нихромовые спирали используют в нагревательных приборах, в электропечах сопротивления.
Упругий сплав элинвар – отличный материал для пружин, в частности часовых.
www.yurii.ru
Сплавы металлов и их применение
В настоящее время находят практическое применение почти все металлы или в чистом виде, или в виде сплавов друг с другом. Это применение целиком определяется теми или иными свойствами металлов и их сплавов. Ниже приводится краткий перечень металлов и их сплавов, которые находят наиболее широкое применение или обладают особо ценными свойствами. Наиболее широко применяется железо и алюминий, а также их сплавы (см. часть IX и часть X).
Медь. Чистая медь благодаря большой электропроводности, уступающей только серебру, широко применяется для изготовления электрических проводов и радиотехнической аппаратуры. Тонкие провода изготовляются из бес кислородной меди (кислорода не более 0,02%), так как кислород сообщает меди хрупкость. Иногда к электротехнической меди в небольших количествах добавляют некоторые металлы, повышающие ее прочность, но не снижающие электропроводности, например кадмий (до 1%).
Сплавы меди с цинком называются латунями, а с другими металлами называются бронзами.
Алюминиевые бронзы (5—11% А1) обладают высокой коррозионной стойкостью и золотистым блеском. Они идут на изготовление лент, пружин, шестерен и художественных изделий. Кремнистые бронзы (4—5% Si) обладают высокими механическими и антикоррозионными свойствами. Они применяются в химической промышленности для изготовления сеток,’ проводов, трубопроводов. Берил-лиевые бронзы (1,8—2,3% Be) способны при быстром охлаждении с 800° принимать закалку и становятся твердыми и упругими, как сталь. Их применяют главным образом при изготовлении часовых механизмов и в точной механике. Большинство бронз имеет сложный состав и являются трех- или четырех компонентными сплавами.
Сплавы меди, содержащие до 10% цинка, называются томпаком; при большем содержании цинка (10—40%) — латунью. Томпак и латунь хорошо прокатываются и обрабатываются штамповкой и прессованием. Они применяются для изготовления листов, труб, патронных гильз и различной арматуры (краны, вентили и др.). Добавление в латунь олова резко улучшает ее коррозионную стойкость («морская» латунь).
Сплавы меди с никелем (иногда с добавлением цинка) обладают значительным сопротивлением. Некоторые из них, например мельхиор, применяются для изготовления предметов домашнего обихода. К этим сплавам относятся: манганин — 85% Си, 12% Мп, 3% N; нейзильбер — 65% Си, 20% Z, 15% N; константан — 59% Си, 40% N, 1% Мп; мельхиор — 80% Си, 20% N.
Цинк. Чистый цинк благодаря высокой коррозионной стойкости используется главным образом для цинкования железа (горячим или электролитическим способом). Значительная часть его расходуется на производство сплавов, главным образом с медью.
Ртуть, являющаяся при обычных условиях единственным жидким металлом, применяется в электротехнической промышленности для изготовления ртутных выпрямителей, ртутных прерывателей и для изготовления термометров.
Германий в чистом виде почти не имеет собственных носителей электрического тока (электронов), и в этом отношении он близок к неметаллам. Обладая полупроводниковыми свойствами, он применяется в электро- и радиотехнике для устройства электрических выпрямителей. Пластинка германия размером в несколько миллиметров заменяет радиолампу.
Олово благодаря высокой коррозионной стойкости применяется для лужения железа. Используют его для приготовления подшипниковых и легкоплавких сплавов.
Свинец в большом количестве идет на изготовление оболочек кабелей (примесей не больше 0,08—0,14%), подшипниковых сплавов, пластин аккумуляторов, применяется также в ядерной технике и на покрытие поверхности аппаратов в химической промышленности.
Титан и цирконий относятся к сравнительно легким металлам, обладающим высокой коррозионной стойкостью. По прочности они не уступают стали. До последнего времени титан относился к редким металлам, так как не было удовлетворительных способов получения его в чистом виде. Механической обработке поддается только чистый титан. Применяется он главным образом в самолетостроении, заменяя дуралюминий, который при сверхзвуковых скоростях самолетов благодаря нагреву начинает терять механические свойства. Весьма перспективно применение титана в морском деле — длительные (десятилетние) опыты показали, что он практически не подвергаем ся коррозии в морской воде.
Цирконий дороже титана. Он нашел применение в устройстве атомных реакторов в качестве коррозионностойкого материала, почти не задерживающего медленных нейтронов. Цирконий в нагретом состоянии весьма активен по отношению к кислороду, водороду, азоту и другим газам. Поэтому его применяют в качестве геттера — вещества, поглощающего газы. С этой целью из циркония делают держатели для вольфрамовых нитей радиоламп.
Ниобий и тантал обладают весьма высокой коррозионной стойкостью. Практически в кислотах, в том числе в смеси соляной и азотной кислот, за исключением плавиковой, они не растворяются. Эти металлы, особенно тантал, находят применение в химической промышленности для замены платины при работе с агрессивными средами. Благодаря высокой теплопроводности, превосходящей таковую железа в 17 раз, тантал весьма пригоден для устройства теплообменников. При одинаковой конструкции и производительности теплообменник из тантала меньше железного примерно в 17 раз. Широкому применению тантала еще мешает его высокая стоимость.
Хром благодаря своей высокой коррозионной стойкости и стойкости против истирания применяется для получения защитных покрытий на железе и меди. Изделия из хрома не изготовляются вследствие его хрупкости. Он входит в состав различных сплавов с железом.
Молибден и вольфрам являются самыми тугоплавкими металлами. Они применяются в виде проволок (особенно вольфрам) при изготовлении нитей накаливания электроламп, высокотемпературных печей. Печи с вольфрамовой обмоткой развивают температуру до 2000—2500°. Благодаря большому сродству вольфрама с кислородом при высоких температурах обмотка должна находиться в восстановительной атмосфере, например водорода. В значительных количествах порошкообразный вольфрам идет на изготовление твердых сплавов на основе карбида вольфрама WC. Порошок карбида смешивается с порошком кобальта, и эта смесь прокаливается под давлением в атмосфере водорода. Получающийся материал (победит) идет на изготовление резцов, которые по сравнению со стальными резцами позволяют увеличить скорость обработки металлов примерно в 200 раз.
Применение металла в промышленности
Применение металла в промышленности
Металл является одним из самых необходимых материалов в промышленности, строительстве, сельском хозяйстве и иных видах жизнедеятельности человека. Несмотря на то, что сегодня все более популярным материалом становится пластик, трубы из него могут использоваться только в помещениях, а конструкции, проходящие под землей, можно изготавливать только из металла.
Чаще всего в промышленности и строительстве используются не чистые металлы, а их сплавы, в основе которых лежит какой-либо элемент и разнообразные добавки, улучшающие его качества – надежность, прочность и т.д. Самыми распространенными сплавами являются сталь, чугун, а также материалы, в основе которых лежит медь и алюминий.
Сталь является самым востребованным металлом. Подобный вывод можно сделать, проанализировав ежегодные объемы производства того или иного металла. В большинстве случаев, сталь представляет собой сплав железа с углеродом, количество которого достигает двух процентов. Сплавы стали подразделяются на несколько видов: малоуглеродистые, уровень углерода в которых не превышает 0,25%, высокоуглеродистые с содержанием углерода свыше 0,55% и легированные, дополненные никелем, хромом, ванадием. Для того чтобы значение стали в жизни человека стало для вас более явным, попробуйте вспомнить все металлические предметы, которые вы использовали за день, — ножи, бритву и т.д. все они изготовлены из стали.
На втором месте по объему производства находится чугун, который также представляет собой сплав железа и углерода. Только в отличие от стали, количество последнего в чугуне несколько больше. Для придания сплаву прочности в чугун добавляется кремний. Особенно широкое распространение чугун получил в строительстве: он используется для изготовления трубопроводной арматуры, крышек люков и других элементов, основным требованием которых является прочность. Кроме этого, из чугуна производится и некоторая посуда: так, в советское время у каждой хозяйки на кухне была сковорода из чугуна.
Хотя сплавы из алюминия не так распространены, как материалы, названные выше, некоторые их достоинства делают их незаменимыми для некоторых операций. Прежде всего, сплавы из алюминия отличает экономичность, легкость в обработке и другом использовании, а также легкодоступность. Такие сплавы без труда поддаются ковке, сварке, штампованию и другим подобным операциям, а также хорошо поддаются обработке на металлорежущих станках.
Использование алюминиевых сплавов ограничено лишь тем, что при высоких температурах они теряют ряд своих свойств. Так, температура двести градусов по Цельсию уже является для них высокой, между тем, как термоустойчивость – это очень важное свойство металла. К достоинствам алюминиевых сплавов относится их безвредность и экологичность, благодаря чему их можно использовать даже для хранения и перевозки пищевых продуктов, стойкость к появлению коррозии, высокая отражательная способность, а также немагнитность. Наиболее часто алюминиевые сплавы применяются в пищевой промышленности и машиностроении. Кроме этого, они необходимы для создания высоковольтных линий и изготовления некоторых архитектурно-отделочных материалов.
Большинство крупных машиностроительных и других промышленных предприятий, а также строительных фирм не работает непосредственно с металлом, покупает необходимый для их производства металлопрокат, изготовляемый металлургическими заводами, согласно ГОСТам или по индивидуальным чертежам заказчика.
Ответ.
Роль металлов в современной технике очень велика. Они широко используются во многих областях народного хозяйства, в т.ч. в тяжёлой отрасли промышленности, станкостроение, в производстве машин и механизмов, в авиационной и автомобильной отраслях промышленности, в космической технике. Наиболее широкое применение имеют железо и алюминий.
Применение алюминия
1.При получение лёгких сплавов (дюралюминий- в авиа-и ракетостроении, в строительстве).
2. В металлургии˸ для восстановления металлов из их оксидов ( алюминотермия).
3. При изготовлении электрических проводов и кабелей ( легче, чем провода из меди).
4.В производстве бытовых предметов.
Применение железа
1.При изготовлении электромагнитов, трансформаторов, электромоторов, мембран микрофонов ( благодаря способности в быстрому намагничиванию и размагничиванию).
2.Основная масса железа используется в виде железоуглеродистых сплавов – чугуна и стали, широко используемых в промышленности.
Применение меди
1.При изготовлении электрических проводов и кабелей ( хороший проводник тока).
2. Как компонент сплавов ( латуней, бронзы и др.).
Применение цинка
1.Как антикоррозионное покрытие от электрохимической коррозии ( благодаря химической активности).
2. Получение технически важных ( высокопластичных) сплавов˸ с Cu ( латуни), с AI и Ni.
3.Производство гальванических элементов ( цинковоугольных).
Применение титана
1.При получении сплавов (титан и ᴇᴦο сплавы обладают большой легкостью, прочностью , термической и коррозионной устойчивостью).
2.В авиа- и ракетостроении ,при строительстве подводных лодок.
3.В морском судостроении для изготовлении обшивки корпусов судов ,обладающих высокой прочностью и стойкостью в морской воде.
4.Как конструкционный материал при изготовлении оборудования для химической ,текстильной и бумажной отраслей промышленности.
Применение хрома
1.В производстве высококачественных твердых сталей (феррохром).
2.При изготовлении металлорежущих инструментов.
3.Как компонент нержавеющих сталей и сплавов.
4.Как антикоррозионное покрытие (хромирование стальных изделий для предотвращения коррозии).
Применение никеля
1.Как компонент легированных сталей ,а так же жаростойких ,сверхтвердых антикоррозионных и других сплавов.
2.Никелирование поверхностей предметов (от коррозии).
3.Как конструкционный материал при изготовлении химической аппаратурой и ядерных реакторов.
Вопрос 3.Сколько литров кислорода и воздуха нужно для полного сгорания 100 л смеси ,состоящий из 10 % метана , 20% пропана и 70% оксида углерода (II)?
Ответ.
Дано˸ Найти˸
V(смеси)= 100 л, V (O2) = ?
ω (Ch5 )= 10 %, V (возд.)= ?
ω (C3 H8)= 20%,
ω (CO) = 70%.
Решение
V (Ch5) = 100 *10 /100 = 10 л,
V (C3 H8) =100*20/100= 20 л,
V (CO) = 100*70/100= 70 л.
10 л Х1 л
Ch5 + 2O2 = CO2 ↑+2h3O.
V ˸ 1 моль 2 моль
V˸ 22,4 л 44,8 л
20 л X2 л
C3H8 + 5O2= 3CO2↑+ 4h3O.
1. подготовка произ-ва
2. собственно произ-во изделия
Под технологической обработкой понимается комплекс следующих работ:
1. Анализ технологичности конструкции нового изделия.
— контроль чертежей
— анализ возможностей изготовления нов. изделия средствами существующего произ-ва
2. Анализ сертификации.
— составление ведомости покупных, заимствованных и оригинальных деталей
3. Составление расцеховки изделия.
— Т.е. перечень цехов, ч\з которые должен пройти заказ
— определяется загрузка каждого цеха и требуемое расширение мощности
4. Проектирование технологического процесса, изготовление и сборка изделий.
5. Анализ средств технологич. оснащения:
— закупка на стороне нового оборудования
— использование существующих средств и их обработка
— инструменты
— проектирование изготовления новых средств оснащения.
6. Доработка изготовлен. спец. средств тех. оснащения.
7. Разработка новой планировки участков и цехов.
8. Отладка технологии и оснащения на опытной партии изделия.
Подсчитывается акт о сдаче пр-ва в технологическую эксплуатацию. Подготовка занимает от 1 до 7 лет, сейчас сокращают от 1до 5. Подготовку ограничивает НТП. Подготовка использует автоматизацию.
№9. Свойства металлов и сплавов, применяемых в машиностроении.
МЕХАНИЧЕСКИЕСВ-ВА – хар-ют способность материалов находиться под нагрузкой не разрушаясь и вместе с тем деформироваться (изменять форму и размеры). Внешняя нагрузка вызывает в тв. теле напряжение и деформацию.
Деформация – нагрузка, сила, отнесенная к единице сечения.
Напряжение – изменение размеров и формы тела под давлением приложенных сил (внешних).
Различают упругую дефформацию (исчезает после снятия нагрузки), пластичную (деформация остается после снятия нагрузки).
Колличественные значения механических свойств определяют в процессе испытаний на специальных разрывных машинах.
Прочность – способность тв. тела сопротивляться деформации и разрушению под действием внешних сил.
— предел прочности sв=Рмах/F0.знаменатель – исходное поперечное сечение, имер. Н/м2 или Мпа.
— Предел текучести sт=Рт/ F0.
Пластичность – способность материала получать остаточное изменение формы и размеров без разрушения.
Показатели:
Относительное удлинение
Относительное сужение
Для стали sт=650МПа-низкая,650-1300-средняя,1300-1400-высокая прочность. Для алюминия dв=200-400 –средняя, для танталовых dв=800.
Твердость – способность материала сопротивляться проникновению другого тела.
Твердость по Бринеллю (НВ) – определяется путем вдавливания стального шарика под нагрузкой в поверхность испытуемого материала. После снятия нагрузки остается луночка, и по размеру луночки судят о твердости. Для стали НВ=150-200- средняя твердость.
Твердость по Роквеллу – в материал вдавливается алмазный конус, после вдавливания остается отпечаток. Угол конуса равен 1360 и вдавливают с разной силой (шкалы А, В, С, но используют шкалы А и С).
По шкале С оценивают твердость закаленных материалов HRC 20-70 среднее значение 45. По шкале А оценивают твердость тонких менее прочных инструментальных материалов HRA 70-85.
ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА.
Коэффициент линейного расширения, электропроводность, теплопроводность, окисление, намагничиваемость, удельная теплота плавления, коэффициент трения (возникает благодаря силам взаимодействия между молекулами и атомами соприкасающихся тел).
ТЕХНОЛОГИЧЕСКИЕ СВОЙСТВА.
Определяют способность материала подвергаться различным методам холодной и горячей обработки.
Жидкотекучесть – способность сплава наполнять форму.
Усадка – сокращение размеров и объема после остывания.
Ковкость – способность материала деформироваться при невысоком сопротивлении и принимать нужную форму без разрушения.
Сваривание – способность металлов образовывать прочные соединения при совместном расплавлении.
ЭКСПЛУАТАЦИОННЫЕ СВОЙСТВА.
Определяет долговечность материалов машине.
Хладноломкость – способность работать при минусовых температурах.
Жаростойкость – способность работать при высоких температурах.
Износостойкость – способность сопротивляться истиранию в процессе трения деталей друг о друга.
Циклическая прочность – вал разрушается при нагрузке в 3 и 5 раз меньше, чем в статическом состоянии.
№10. Черные металлы (чугуны и стали), Сортамент, основные виды, марки материалов.
Черными металлами является железо и его сплавы. На долю черных металлов приходится 95% мировой металлопродукции.
Марки:
Чугун Fe+C (3-4,5%).
В его состав могут входить полезные Mn & Si и плохие составляющие S & P (вместе с коксом). Чугун делят на группы:
Серый чугун. (технический): СЧ32, где прочность -sв=32 кг/м2. Используют для изготовления рам и станин машин.
Ковкий чугун. (более прочный): КЧ17-32 соответственно прочность-sв и пластичность -d. Изготовляют крупные детали, работающих при динамичной нагрузке: маховики паровых машин.
Высокопрочный жаростойкий чугун (300-400оС): ЧС5 (Si – 5% придает высокую термостойкость)
Сталь – деформируемый ковкий сплав Fe+C (до 2%). Различают по химическому составу:
Углеродистые стали. (Mn 1%, Si 0.45%).
1.Углеродистая сталь обыкновенного качества: Ст0 до Ст6 (7 марок), наиболее известная Ст3, по мере увеличения цифры увеличивается содержание углерода и прочность-sв. Из нее изготавливают прокат:
magictemple.ru
Доклад про сталь
Вам когда-нибудь приходилось видеть кусок настоящего железа? Скорее всего, нет: его очень сложно получить и это недешево стоит, а главное, из него не сделаешь почти ничего полезного. С давних пор люди по привычке говорят: «железный гвоздь», «железная дорога», «железное ведро». На самом деле и гвозди, и ведра, и рельсы сделаны не из железа, а из сплавов железа с другими веществами.
Чистое железо — очень хрупкий и мягкий металл. Если же расплавить железо и к нему добавить немного углерода, то после застывания получится твердая и прочная сталь. Именно из нее сделаны многие окружающие нас вещи, которые мы неправильно называем железными. Сталь — это затвердевшая смесь железа и углерода (их сплав).
Разновидности стали
Сплавляя разные металлы и неметаллические минеральные вещества, можно получать материалы с новыми свойствами, которыми не обладает ни один из входящих в них элементов. Мягкие металлы становятся твердыми, непрочные превращаются в очень крепкие, легко расплавляемые приобретают возможность выдерживать высокую температуру. Даже небольшие добавки других веществ в расплавленный металл резко изменяют его свойства. Такие добавки называются легирующими элементами, а металл — легированным.
Например, нержавеющая сталь легирована никелем и хромом, а сталь легированная вольфрамом и хромом становится быстрорежущей (разновидность инструментальной). Резцы этой стали могут накаляться при работе до красного цвета, сохраняя свою твердость.
В зависимости от типа производства сталь бывает мартеновской, кислородно-конвертерной (важнейший способ производства на сегодняшний день), кислой, основной или электросталью.
По назначению изделий выделяются группы: конструкционные (строительные конструкции, машины, суда, вагоны, паровые котлы) и инструментальные (ударно-штамповые, режущие и мерительные инструменты).
По качеству (количеству вредных примесей) стали подразделяют на обыкновенные, качественные, высококачественные и особо высококачественные.
По характеру застывания различают спокойную, полуспокойную и кипящую сталь.
Применение стали
Этот сплав уже несколько веков верно служит человечеству в самых разных областях. На его долю приходится более 90 % всех изделий из металла. Более того, это основной элемент черной металлургической промышленности и главный материал для любого производства. Из сплавов изготавливаются инструменты, детали машин, бытовые вещи, мосты, скульптуры и т.д.
На сегодняшний день во всем мире производится около полутора миллиардов тонн стали. Около половины мирового производства приходится на долю Китая. Россия в этом списке находится на 15 месте.
Если это сообщение тебе пригодилось, буда рада видеть тебя в группе ВКонтакте. А ещё — спасибо, если ты нажмёшь на одну из кнопочек «лайков»:
Вы можете оставить комментарий к докладу.
www.doklad-na-temu.ru