Спиральные компрессоры принцип работы – Спиральный холодильный компрессор. Принцип работы и устройство. —

alexxlab | 15.03.2019 | 0 | Вопросы и ответы

Содержание

Спиральный холодильный компрессор. Принцип работы и устройство. —

Главным элементом любого холодильного оборудования является компрессор. Он служит для обеспечения движения хладагента в системе и создания разности давлений.

Относительно недавно стали применяться в холодильной технике компрессоры спирального типа. В основном они работают в составе систем кондиционирования, чиллеров, тепловых насосов, средне и высокотемпературных холодильных установок.

 

Рабочим элементом спирального компрессора является спираль. Принцип работы холодильного спирального компрессора основан на согласованном вращении одной спирали относительно другой.

 

Принцип работы спирального холодильного компрессора.

В спиральном компрессоре сжатие паров хладагента происходит между двумя спиралями. 

Одна спираль неподвижная, вторая – совершает вращение вокруг неё. Причем это движение имеет непростую траекторию. Электродвигатель, находящийся в одном герметичном корпусе компрессора, совершает работу – вращает вал, на конце которого находится эксцентрично установленная спираль. Вращаясь, подвижная спираль перекатывается по стенкам неподвижной спирали, скользя по масленой плёнке.  Точки контакта спиралей постепенно перемещаются от края к центру, причем они расположены на каждом витке рабочего элемента. Захватывая всасываемые пары хладагента в зоне большего объема сжимаемого газа, спирали постепенно сжимают их по мере приближения рабочей зоны к центру, так как объем её уменьшается. Соответственно, в центре спиралей достигается максимальное давление газа, который через линию нагнетания компрессора затем поступает в конденсатор. В спиральном компрессоре, в процессе работы, сжатие паров происходит непрерывно, так как точка касания спиралей не одна и рабочих зон сжатия образуется несколько. Электродвигатели герметичных спиральных компрессоров охлаждаются за счет всасывающих паров хладагента.

 

Устройство спирального холодильного компрессора.

Рассмотрим устройство спирального холодильного компрессора на примере продукции фирмы Danfoss Performer. Устройство компрессоров других производителей аналогично. Основные узлы спирального компрессора показаны на рисунке 2.

clip_image001.jpg" o:title="Спиральный компрессор"/>

Рисунок 2. Устройство спирального холодильного компрессора.

 

Благодаря своей конструкции, количество взаимно трущихся деталей в спиральном компрессоре значительно меньше, чем в поршневом, что теоретически говорит о его надежности.

Также к достоинствам конструкции можно отнести отсутствие мертвого вредного пространства в зоне сжатия, что увеличивает эффективность работы.

Благодаря тому, что в процессе сжатия газа образуются одновременно несколько рабочих зон, пары хладагента нагнетаются равномерней, чем в поршневых компрессорах и меньшими рабочими объемами, что снижает нагрузку на электродвигатель.

Для повышения эффективности работы, большое внимание в спиральных компрессорах уделяется герметизации боковых и торцевых поверхностей контактов спиралей, для уменьшения перетечек газа между соседними зонами сжатия.

Спиральные компрессоры изначально проектировались и нашли своё наибольшее применение в области  высоко- и средне-температурных холодильных систем – это кондиционирование воздуха, чиллеры, тепловые насосы. Но и в низкотемпературных холодильных установках они также используются, благодаря технологии впрыска малого количества хладагента в центр спиралей в процессе работы.

 

Регулирование производительности спиральных компрессоров возможно с помощью частотных преобразователей, изменяя скорость вращения вала. Кроме этого, производитель спиральных компрессоров Copeland, разработал технологию регулировки производительности за счет изменения расстояния между спиралями во время вращения. Эта технология позволяет работать спиральному компрессору в холостую, вообще не образуя рабочих зон сжатия.

 

На сегодняшний день спиральные холодильные компрессоры производят и поставляют в Россию и соответственно в Челябинск такие всемирно известные фирмы, как Emerson Copeland, Danfoss Performer, Bitzer.

rimholod.ru

Спиральный компрессор принцип работы - КБМ Групп

Спиральные безмасляные компрессоры относятся

к компрессорам объемного принципа действия. Образующей основой компрессора составляют две одинаковые пластины, в форме спирали, одна спираль вставлена в другую, с разворотом 180° относительно друг друга.

Неподвижная спираль соединена с корпусом спирального блока, вторая спираль – подвижная (вставлена в неподвижную), крепится с эксцентриком вала компрессора. Подвижная спираль совершает орбитальное движение, каждая точка описывает окружность. Оси спиралей параллельны, при этом смещены относительно друг друга на величину, равную эксцентриситету вала. Спирали не соприкасаются друг с другом, между ними существует зазор. Торцы спиралей соприкасаются с корпусом спирального блока, используется специальный антифрикционный материал.

Рабочий цикл безмасляного спирального компрессора осуществляется за один оборот подвижной спирали. Во время движения, между двумя спиралями образуются полости (камеры сжатия), которые смещаются к центру спиралей, при этом уменьшается их объем. Достигнув центра спирали, воздух, сжатый до требуемого давления, выталкивается через выходное отверстие, которое расположено в центре основания неподвижной спирали. Сжатие воздуха происходит в нескольких полостях одновременно, что способствует плавному процессу сжатия. Всасывание и нагнетание происходят непрерывно.

Во время работы износу подвергаются антифрикционные уплотнения, между спиралью и корпусом блока, при сильном износе, увеличиваются зазоры, из-за чего производительность спирального компрессора снижается. Своевременная замена уплотнений позволит избежать снижения производительности. На всасе устанавливаются воздушные фильтры, для фильтрации твердых частиц из всасываемого воздуха, что снижает износ уплотнений.

Выше рассмотрен принцип работы спирального компрессора, в зависимости от поставленных задач данное оборудование позволяет полностью закрыть потребности в безмасляном сжатом воздухе.

Основные преимущества спирального компрессора:
- отсутствие масла в сжатом воздухе
- высокая надежность
- малый уровень шума
- низкие затраты на техническое обслуживание
- малые габаритные размеры

 

 

 

www.kbm-spb.com

Конструкция и принцип действия спиральных компрессоров

Конструктивная схема спирального компрессора включает две спирали, ведущий вал с эксцентриком, корпус и другие узлы, обеспечивающие заданное движение и правильное взаимодействие деталей компрессора.

Рис. 1. Взаимное положение спиралей в момент начала сжатия газа во внешних парных полостях (на нижней проекции подвижная спираль заштрихована)

Каждая спираль (обе спирали одинаковы) одним своим торцом соединена с плитой (или платформой) или изготовлена с ней за единое целое. Свободными торцами спирали вставлены одна в другую (рис. 1) с разворотом 180° между собой. Одна из спиралей неподвижна. Она соединена с корпусом компрессора.

Вблизи ее оси имеется отверстие А для выхода сжатого газа и два отверстия для его входа. Другая спираль – подвижная, имеет хвостовик В, которым шарнирно соединяется с эксцентриком ведущего вала. Оси спиралей смещены на величину ε0, равную эксцентриситету вала, оставаясь параллельными между собой. Между спиралями две (или больше) всегда парные замкнутые полости, объем которых при относительном движении спиралей изменяется.

В положении, показанном на рис.1, две внешние парные полости заполненные газом, две внутренние – соединены с окном нагнетания А.

Подвижная спираль не может вращаться вокруг своей оси. Она должна совершать только орбитальное движение по окружности радиусом ε0, вокруг оси неподвижной спирали (может быть и иная траектория).

Принцип действия спирального компрессора иллюстрирует рис. 2, на котором показаны взаимные положения спиралей при перемещении подвижной спирали по круговой орбите через 90º.

Рис. 2. Последовательное положение спиралей через 90° перемещения подвижной спирали по орбите в процессах всасывания, сжатия и выталкивания газа

Цикл всасывания (раскрытие и закрытие внешних ячеек) совершается за один оборот вала компрессора с эксцентриком. Затем он повторяется.

Цикл сжатия и выталкивания газа длится дольше, примерно от 2 до 2,5 и более оборотов в зависимости от угла закрутки спирали и размера окна нагнетания, расположенного рядом с «носиком» неподвижной спирали.

Рабочий цикл спирального компрессора совершается за один оборот (проход) подвижной спирали по своей орбите.

Следует обратить внимание на то, что одновременно с процессом сжатия и последующим вытеснением газа в одной паре полостей проходит образование новой пары полостей, их постепенное заполнение свежим газом в течение всего цикла, затем процесс повторяется.

Важны узлы компрессора, обеспечивающие орбитальное движение подвижной спирали и предотвращающие ее поворот вокруг собственной оси. Эти устройства имеют различное конструктивное оформление. В качестве противоповоротного устройства применяются: муфта Ольдгейма, поводковое, шестеренчатое и другие устройства.

Орбитальное движение подвижной спирали предъявляет специфические требования к конструкции упорного подшипника, который, помимо его прямого назначения, в ряде случаев может выполнять функции устройства, удерживающего спираль от вращения вокруг своей оси.

Классификация спиральных компрессоров проводится по конструктивным признакам и подразделяются на:
– вертикальные и горизонтальные по расположению вала. В горизонтально расположенных спиральных компрессорах, например, у транспортного кондиционера с параллельным расположением вала спирального компрессора и продольной оси транспортного средства, труднее обеспечить надежную работу системы смазывания компрессора;

– герметичные, бессальниковые и сальниковые. Применение того или иного типа зависит от назначения и условий эксплуатации, а также от рода сжимаемого рабочего вещества;
– одинарные и сдвоенные. Одинарные имеют по одной подвижной и неподвижной спирали, а у сдвоенных имеются две неподвижные спирали, между которыми установлены две подвижные, имеющие общий эксцентриковый вал;
– одно, двух-, и многоступенчатые с различным расположением ступеней по отношению к двигателю;
– с клапаном на нагнетании и без него;
– маслозаполненные, сухого сжатия и с впрыском охлаждающей, в том числе быстро испаряемой жидкости (например, холодильного агента).

По типу профиля и числу заходов спиралей различают:
– спираль Архимеда;
– эвольвентную спираль;
– одно, двух-, и многозаходные спирали;
– с кусочно-окружными элементами.

Основное требование к геометрии спиралей – обеспечение образования замкнутой полости во всем диапазоне изменения угла поворота ротора от начала до конца процесса сжатия.

По функциональному назначению спирали подразделяются на спиральные компрессоры общего назначения, холодильный, вакуумный насос, детандер (расширительная машина – спиральная турбина).

Область применения спиральных компрессоров по давлению нагнетания ориентировочно лежит в пределах 0,7…1,2 МПа, а по производительности 6…100 м³/ч. Наиболее широко они используются в системах кондиционирования воздуха на автомобильном и железнодорожном транспорте и в жилых помещениях, в торговом холодильном оборудовании, в тепловых насосах и водоохлаждающих холодильных машинах. Наиболее распространенная область применения спиральных компрессоров находится в диапазоне холодопроизводительностей от 1 до 20 кВт.

tehprom-k.ru

Спиральный компрессор устройство и принцип работы

Содержание


Спиральный компрессор — это техника для получения сжатого воздуха или хладагента. Уменьшение объема производится путем вращения двух спиралей, на чем основан принцип действия установки. Агрегаты данного типа успешно используются в кондиционировании, нагревании/охлаждении, холодильных контурах и изготовлении вакуумных насосов.
Прототип установки был запатентован во Франции еще в 1905 году, но практического применения не последовало из-за отсутствия производственной базы.



Конструкция и устройство

На практике применяются различные принципы действия, основанные на спиральном движении. Промышленность выпускает следующие типы аппаратов:

 с двумя спиральными элементами, один из которых стационарный, другой является подвижным контуром. При вращении одной из спиралей возникают карманы, объем которых уменьшается при повышении скорости оборотов. Газ, находящийся в отсеках, сжимается и на выход подается нужного давления;  с двумя вращающимися по различным осям спиралями. Принцип остается прежним: при работе образуются карманы, повышение скорости приводит к сжатию газа внутри системы;

 наличие в системе жесткой спирали Архимеда и гибкой трубки. Подобное инженерное решение называют шланговым экземпляром, требующим дополнительной смазки и отвода тепла.

Важным отличием спиральных моделей является отсутствие всасывающего клапана. Подвижный ходовой элемент автоматически отсекает канал поступления воздуха/газа от рабочей камеры при вращении. В системе нагнетания может присутствовать обратный клапан, не позволяющий возникать потоку при остаточном вращении.


Принцип работы основан на перемещении спирали, укрепленной на валу двигателя, с постепенным перемещением к центру установки. При этом захваченный газ попадает из больших отсеков в малые, и так до полного сжатия. Из центра системы сжатый газ поступает в конденсатор непрерывно, поскольку во время вращения вала образуется несколько зон сжатия. Двигатели охлаждаются за счет всасываемых при вращении паров хладагента, что значительно повышает ресурс эксплуатации.

Появление регулируемых моделей значительно расширило сферу применения и позволило снизить энергопотребление компрессорных станций. Скорость вращения регулируется с помощью комплектации преобразователями. Появилась возможность корректировать зазор между осями вплоть до нулевых показателей. Меняя холостой ход и рабочую нагрузку с помощью дополнительного регулятора, можно добиться нужной производительности агрегата.

Для повышения технических характеристик особое внимание уделяется герметичности контактов. Боковые и торцевые части конструкции тщательно подгоняются, чтобы сжимаемая субстанция не могла переходить из одного отсека в другой. При остановке движения спирали размыкаются по всем направлениям. При новом запуске оборудование не испытывает повышенной нагрузки, поскольку происходит плавное повышение давления.



Преимущества и недостатки

Основным преимуществом спиральной техники является высокий КПД (80-85%), что позволяет получить значительную экономию в процессе длительного применения. Спиральный компрессор, в отличие от поршневого, работает намного тише. Движение не дает сильной вибрации, оборудование является уравновешенным и работает практически без шума.

К очевидным плюсам подобных моделей можно отнести:

 количество трущихся поверхностей гораздо меньше, чем при ином принципе, что говорит о надежности аппарата;

 отсутствие не используемого объема в зоне сжатия, что повышает эффективность эксплуатации;

 нагрузка на двигатель уменьшена, поскольку нагнетание осуществляется равномерно и умеренными дозами;

 благодаря плавной работе, техника не требует повышенного внимания к расположению.

 не требуется пружинной подвески и укрепленного основания, благодаря плавному ходу;

 возможность применения на любом холодильном агенте, воздухе или включении капельной жидкости;

 количество движущихся деталей снижено на 80% по сравнению с поршневыми аналогами.


По сравнению с поршневыми типами, вес изделий меньше на 15%, размеры снижены на 30%. Это компактное и современное оборудование легко монтируется и обслуживается, первичная наладка и пуск не представляют затруднений. Следует учесть высокую быстроходность агрегатов, скорость действия возможна в рамках 1000-13000 об/мин., эти параметры постоянно расширяются.

 Недостатком моделей является то, что требуется следить за чистотой подаваемого газа, поскольку частицы попадают на спирали и приводят к дополнительному трению, разгерметизации камеры и быстрому износу техники.

Кроме того, необходимо учитывать следующие моменты:

работа вала допускается только в одном направлении, обратное поступательное движение не предусмотрено конструкцией;

при движении подвижная часть машины испытывает различные системы силового воздействия, поэтому необходима тщательная балансировка, расчет и уравновешивание моментов;

данному типу требуются детали, производимые на новейших фрезерных станках с ЧПУ, что является более сложным технологическим решением.

Приобретая компрессоры данного вида, потребитель может рассчитывать на длительную и бесперебойную эксплуатацию в быту или на производстве.

Теги: спиральный компрессор устройство и принцип работы, устройство спирального компрессора

www.compressor-mash.ru

основные технические характеристики и история создания

Техника для охлаждения обладает способностью отводить тепло от разнообразных объектов. Применение и принцип работы холодильных агрегатов на спиральных компрессорах заключается в том, чтобы используя электроэнергию, забирать от объектов теплый воздух и перемещать его к охлаждающим жидкостям или воздуху, у которого должен быть более высокий уровень температур в отличие от объекта, который охлаждается.

Для того чтобы охладить воду или водный раствор, возможно использование чиллеров или технологичных машин для выработки холода. В основном их использование распространяется на то, чтобы обеспечить основные режимы для охлаждения, замораживания и сохранения разнообразных продуктов в системе кондиционирования воздуха, линии по разливу и камере для охлаждения.

Спиральный компрессор

Установка по выработке холода представляет собой комплексную систему, которая применяется для того, чтобы поддерживать в объектах низший температурный режим, чем у окружающего воздуха. Основными их компонентами являются одна или несколько холодильных машин, состоящие из необходимого вспомогательного оборудования. Агрегат для охлаждения объектов образуется из объединения необходимых составляющих в единую систему.

Компрессор и его основные виды

Компрессоры являются важным звеном в системах охлаждения объектов. Они предназначены для того, чтобы нагнетать рабочее тело при различных процессах. Под понятием нагнетания подразумеваются не только процессы по подаче тела, но и повышение его давления.

Рабочее тело состоит из газов и паров от разных веществ.

Компрессоры могут быть:

  • лопаточными;
  • объемными.

При функционировании механизмов лопаточного типа давление повышается по причине того, что кинетическая энергия в рабочем теле преобразуется до потенциальной.

Давление увеличивается за счет того, что рабочее тело, проходя через лопаточные каналы, набирает достаточно большую скорость, а при прохождении диффузора её снижает.

Спираль компрессора

Лопаточные устройства, в свою очередь, бывают центробежными и осевыми.

Объемные компрессоры повышают показатели давления путем снижения объемов.

Компрессоры в машинах для охлаждения можно назвать насосами и они занимаются перекачиванием холодильного агента по трубопроводным системам, составляющие части которых заставляет работать электрический двигатель.

В большинстве случаев электрический двигатель и насосы выполняются с одним герметичным корпусом. Устанавливается компрессор снизу, под холодильным шкафом.

Его действие имеет такую последовательность:

  • в испарителе находится хладагент, который имеет парообразное состояние, а также низкий уровень давления и температурных показателей;
  • всасывается, а после сжимается холодильный агент, и повышаются его температура и показатели давления;
  • хладагент в состоянии сжатия или паров направляется в конденсатор.

Почти все модели осуществляют эту подачу с помощью ресивера.

Когда пар хладагента выходит из компрессора, показатели его давления будут колебаться в рамках 15 — 25 атмосфер, а показатели температур от 70 до 90 градусов. Это зависит от степени нагрузки.

Основные критерии оценки функциональности компрессорного механизма

Характеризуют эффективность компрессоров по следующим факторам:

Конструкция агрегата с компрессором

  • степени сжатия хладона, которая определяется отношением показателей давления при выходе и при входе;
  • на основе такого понятия, как секундный объем хладагента, то есть тот объем, который нагнетается за определенное время.

Существуют несколько видов компрессоров для холодильных машин, в том числе и спиральные. При создании установок для охлаждения часто применяют именно такие устройства.

Процесс изобретения компрессора со спиралью

Спирали известны человеку несколько тысячелетий и представляют собой витки, которые закручиваются вокруг одной и той же точки. Техническое воплощение спиралей стало реальным в прошлом столетии.

В первые годы двадцатого века Леоном Круа была разработана и запатентована конструкция компрессора на их основе. В тот период времени оснащение производственных предприятий оставляло желать лучшего и реализовать технологию не удавалось. Воплотить прототип в работающую конструкцию оказалось возможным только во второй половине двадцатого века благодаря машинной обработке. Именно по этой причине техника на основе спиральных компрессоров появилось в продаже относительно недавно.

Представители крупных компаний-производителей проявили заинтересованность к новинке, поскольку механизмы на спиралях позволяли достигать хороших показателей. Испытания показали, что с применением и принципами работы холодильных агрегатов на спиральном компрессоре можно добиться высокой эффективности, которая превосходит эксплуатационные характеристики аналогов.

В 1992 году компания «Iwata Compressor» выпустила безмасляный или «сухой» компрессор на основе спиралей. К его преимуществам можно отнести возможность долговременного использования, невысокие показатели уровней шумов и вибраций.

Со временем компрессоры этого типа все больше применялись в производстве оборудований, вырабатывающих холод и систем для кондиционирования воздуха. Это происходит потому, что они отличаются высокими возможностями эксплуатирования, а также экономичны, поскольку для их сборки требуется значительно меньшее количество деталей по сравнению с другими.

В наши дни большое количество фирм-производителей представляет на рынке оборудование со спиральным компрессором. Такие установки прекрасно выдерживают все испытания и тестирования и за счет этого активно вытесняют с рынка другие конструкции.

Принцип работы агрегатов на основе компрессоров со спиралью

Работа этого вида установок осуществляется за счет следующих процессов:

Детали спирального компрессора

  1. Компрессор содержит две спирали, которые находятся одна в другой и имеют особенность к расширению от центральной части к краю в процессе вращения. Причем одна из них все время пребывает в неподвижном состоянии, а вторая находится в процессе вращения вокруг первой.
  2. Профили спиралей образует герметичная кривая, которая называется эвольвента. У зубчатых колес шестеренок аналогичный геометрический профиль, который способствует перекатыванию зубьев в местах соприкосновения. Местом расположения подвижной спирали является эксцентрик.
  3. Когда одна из спиралей находится в процессе вращения, происходит взаимодействие ее наружной поверхности с внутренними поверхностями неподвижной спирали. Это позволяет парам хладагента сжиматься и вытеснять их к нагнетательному отверстию. В результате этого происходит охлаждение.

Применение установок для охлаждения со спиральными компрессорами

Агрегаты, способные вырабатывать холод, применяют в областях, которые подразумевают хранение продуктов или медикаментов. Это супермаркеты, бары, кафе, рестораны и другие заведения, где необходимо хранить продукты, которые должны сохранить свой вкус и полезные качества.

У оборудования по выработке холода есть и более масштабная область применения, например, пищевая промышленность, мясоконсервное производство, птицефабрики, молочная промышленность и прочие области пищевой индустрии, где есть необходимость в хранении продуктов с соблюдением определенного температурного режима.

Также подобные агрегаты применяют в области фармацевтики, так как многие лекарственные препараты необходимо хранить при определенной температуре.

На современных предприятиях с недавних пор появилась методика «шоковой заморозки продуктов», где установки на основе спиральных механизмов находят применение в кратковременном замораживании.

Еще одна сфера использования — это фермерское и сельское хозяйство, где также необходимо хранение продукции при определенных температурах.

Помимо хранения продуктов, подобные установки применяют на цветочных складах и в местах розничной торговли букетами. Правильное охлаждение позволяет продлить срок хранения срезанных цветов.

Широкая область применения и принципы работы холодильных агрегатов на спиральном компрессоре обеспечивают высокий уровень спроса на подобную продукцию и в наши дни произведено более двадцати миллионов подобных машин.

oventilyatsii.ru

Принцип действия спирального компрессора

22.09.2018

Главная составляющая всякого морозильного оснащения – компрессорное устройство. Он необходим для того, чтобы поддерживать движение холодильного агента в системе и для формирования отличия давлений. Не так давно стали применяться приборы на спирали. Спиральный компрессор – устройство, функционирующее внутри охлаждающего оборудования, в термических насосах, агрегатах со средней и высокой температурой.

Принцип действия спирального компрессора

Функциональная составляющая данного оснащения – спираль. Принцип действия спирального компрессора базируется на кручении одной спирали по отношению к другой.

Внутри спирального прибора сжимание холодильного агента в газообразной фазе осуществляется между пары спиралей. Первая спираль не двигается, другая – крутится вокруг неподвижной. Это движение весьма сложное. Электрический двигатель, который находится в едином плотном корпусе, осуществляет работу – крутит вал, в конце какого расположена спираль. Движущая спираль крутится по стенкам не двигающейся спирали, скользит по пленке из масла. Участки соприкосновения спиралей понемногу движутся от края к центру, они находятся на каждом витке функционального компонента.

Дальше работа спирального компрессора заключается в том, пары холодильного агента захватываются в области большого объема сжатого газа, спирали потихоньку сжимают их по мере того, как рабочий участок приближается к центру, снижается и объем. Таким образом, по оси спиралей получается наибольшее давление газа, что через нагнетательные тракты компрессорного устройства идет в конденсатор. Спиральный компрессор, принцип работы которого несложен, функционирует так, что сжатие паров осуществляется постоянно, поэтому участок соприкосновения спиралей не один, и функциональных участков сжатия формируется несколько. Электрические двигатели плотных спиральных компрессорных устройств охлаждаются благодаря впитывающим парам холодильного агента.

Конструкция спирального компрессорного устройства

Конструкция спирального компрессора такова, что число трущихся элементов в обозначенном приборе существенно ниже, нежели в поршневом, что в теории  свидетельствует о его надежности.

Компания «Дом Холода» предлагает спиральный компрессор, устройство и принцип которого:

  • соответствуют нормам производства и работы;
  • учитывают современные требования;
  • служат долгое время.

Приобрести можно непосредственно на сайте «Дом Холода».


Возврат к списку

domxoloda.ru

Принцип работы винтового компрессора | НПП Ковинт

В данной статье затронем вопрос о принципе работы винтового компрессора.

Повторюсь, что винтовой компрессор относится к компрессорам объемного действия, где сжатие воздуха/газа происходит за счет изменения полости сжатия.

Типичная конструкция винтового компрессора показана на рисунке ниже:

Конструкция винтового компрессора

Цифрами на рисунке обозначены:

1 – входной фильтр

2 – всасывающий клапан

3 – винтовой блок

4 – приводной ремень

5 – шкивы ременной передачи

6 – электродвигатель

7 – масляный фильтр

8 – масляный резервуар

9 – сепаратор

10 – клапан минимального давления

11 – термостат

12 – масляный радиатор

13 – воздушный радиатор

14 – вентилятор

В винтовых компрессорах существует два основных потока (или контура): воздушный/газовый поток и масляный поток.

Рассмотрим их подробнее на примере воздушного компрессора.

Воздушный поток

Всасываемый воздух через входной фильтр 1 и всасывающий клапан 2 попадает в винтовой блок 3. Именно в винтовом блоке, который является «сердцем» компрессора, происходит сжатие воздуха.

Основными компонентами винтового блока являются ведущий (ему передается вращение от электродвигателя 6, приводной ремень 4 и шкивы 5) и ведомый роторы:

Винтовой блок

Принцип сжатия воздуха в винтовом блоке наглядно показан на рисунке ниже:

Принцип сжатия воздуха в винтовом блоке

Следует отметить, что вращение к ведущему ротору может передаваться не только через ременную передачу, но и «напрямую» через эластичную муфту:

Муфта эластичная

Наличие всасывающего клапана 2 позволяет компрессору работать в двух основных режимах:

  • холостой ход (клапан закрыт)
  • нагрузка (клапан открыт)

Это отличает винтовой компрессор от, например, поршневого. Наличие режима холостого хода позволяет сократить число пусков двигателя компрессора и, тем самым, увеличить его надежность и срок службы. Ведь частые пуски отрицательно влияют как на сами двигатели, так и на систему энергоснабжения предприятия в целом.

Смесь сжатого роторами воздуха и масла попадает в масляный резервуар 8.

Наличие масла в винтовом блоке необходимо по ряду причин:

  • отвод тепла, образующегося при сжатии воздуха
  • смазка подшипников винтового блока
  • уплотнение камер сжатия за счет образования пленки на поверхности роторов

В масляном резервуаре 8 происходит первичное отделение масла от сжатого воздуха (за счет вращательного движения потока).

Остатки масла отделяются от сжатого воздуха в сепараторе 9 и возвращаются в винтовой блок 3 по специальному каналу.

Очищенный от масла сжатый воздух через клапан минимального давления 10 и охлаждаемый вентилятором 14 воздушный радиатор 13 подается потребителю.

Клапан минимального давления 10 необходим для поддержания в масляном резервуаре 8 давления, требуемого для нормальной циркуляции масла независимо от давления в сети потребителя.

Как правило, клапан минимального давления открывается при давлении на его входе на уровне 4-4,5 бар.

Вентилятор 14 может располагаться как на валу электродвигателя 6, так и приводиться в действие собственным электродвигателем.

Производительность вентилятора и площадь охлаждаемой поверхности радиатора 13 рассчитываются таким образом, чтобы обеспечить температуру сжатого воздуха на выходе компрессора, не превышающую температуру окружающей среды более, чем на 10 °С.

Следует отметить, что система охлаждения винтового компрессора может быть и водяной. В этом случае радиаторы 12 и 13 компрессора представляют собой трубчатые теплообменники, в которых охлаждение рабочей среды (масло, сжатый воздух) обеспечивается циркуляцией воды (или другого охлаждающего агента) в межтрубном пространстве теплообменника.

Теплообменник винтового компрессора с водяным охлаждением

Применение водяного охлаждения позволяет:

  • снизить уровень шума, производимого компрессором при работе;
  • отказаться от монтажа вентиляционных коробов для отвода от компрессора горячего охлаждающего воздуха.

Масляный контур

Масло из нижней части масляного резервуара 8 возвращается в винтовой блок 3 под действием давления, поддерживаемого внутри резервуара, благодаря наличию клапана минимального давления 10.

В зависимости от температуры масло может двигаться либо по «малому» контуру (масляный резервуар 8 – термостат 11 – масляный фильтр 7 – винтовой блок 3), либо по «большому» (масляный резервуар 8 – термостат 11 – масляный радиатор 12 – масляный фильтр 7 – винтовой блок 3).

Температура масла очень важна для длительной безотказной работы компрессора.

Слишком низкая температура может вызвать выделение конденсата из воздуха еще на этапе сжатия и «эмульгирование» масла, которое значительно ухудшит его эксплуатационные качества. Слишком высокая температура значительно снижает срок службы масла, а также вызывает чрезмерные температурные деформации роторов компрессора, которые могут привести, в худшем случае, даже к заклиниванию компрессора.

Как видите, ничего сложного в устройстве винтового компрессора нет. Современные винтовые компрессоры являются, бесспорно, надежными и эффективными для производства сжатого воздуха как на больших промышленных предприятиях, так и на предприятиях малого бизнеса.  

На этом все.

Если у вас остались вопросы, то вы можете задать их в форме ниже. Мы ответим в течение 1-2 рабочих дней.

 

С уважением,

Константин Широких & Сергей Борисюк

Вернуться в раздел Полезная информация

Еще по теме:

Винтовые компрессоры. Общая информация

Принцип работы винтового компрессора

Конструкция/устройство винтового компрессора

Конструкция винтового газового компрессора. Видео

Конструкция винтового блока компрессора

Конструкция всасывающего клапана (регулятора всасывания) винтового компрессора

Конструкция термостата. Назначение термостата в винтовом компрессоре

Конструкция клапана минимального давления (КМД). Назначение КМД в винтовом компрессоре

Конструкция масляного резервуара. Назначение и принцип действия

Конструкция сепаратора тонкой очистки. Назначение и функции в винтовом компрессоре

Схема управления работой винтового компрессора. Общая информация

Силовая часть схемы управления винтового компрессора

covint.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *