Трансформаторы 10 кв – Силовые трансформаторы 10 кВ | Режимщик

alexxlab | 02.10.2019 | 0 | Вопросы и ответы

Трансформаторы силовые масляные класса напряжения 6-10кВ.

Тип изделия, обозначение нормативного документа Номинальное напряжение, кВ Схема и группа соединения обмоток Потери, кВт Масса, кг полная
ВН НН холостого хода короткого замыкания
ТМ-1000/10- У1 СТО 15352615-012-2011 6,00*; 10,00 0,40 D/Yн -11*; Y/Yн -0; Yн/D -11* 1,90 12,2 3495
ТМ-1600/10- У1 СТО 15352615-012-2011 6,00; 10,00* 0,40 D/Yн -11*; Y/Yн -0*; Yн/D -11 2,35 18,0 4750
ТМ-2500/10-У1 СТО 15352615-012-2011 6,00*; 10,00 0,40; D/Yн -11; Y/D-11 4,20 28,0 7800
ТМ-2500/10-У1 СТО 15352615-012-2011 6,00*; 10,00 6,30 D/Yн -11; Y/D-11 3,90 23,5 7800
ТМ-4000/10-У1 СТО 15352615-012-2011 10,00; 10,50* 6,30; 10,50* Y/D-11 5,20 33,5 11300
ТМ-6300/10-У1 СТО 15352615-012-2011 6,00 6,30 D/D - 0 7,40 46,5 15100
ТМ-6300/10-У1 СТО 15352615-012-2011 10,50 3,15*; 6,30 Yн/D – 11*; D/D - 0 7,40 46,5 15100
ТМ-10000/10-У1 СТО 15352615-012-2011 6,00*; 6,30*; 10,00*; 10,50 6,30; 10,50* D/D-0; Yн/D-11* 12,00 60,0 7700

www.transformator.com.ru

Конструкция и техническая характеристика силовых трансформаторов 6-10 кВ

Конструкция масляных трансформаторов.

Силовые трансформаторы предназначены для преобразования (трансформирования) переменного тока одного напряжения в переменный ток другого напряжения — более низкого или более высокого. Трансформаторы, понижающие напряжение, называют понижающими, а повышающие напряжение — повышающими.

Трансформаторы изготовляют двухобмоточные и трехобмоточные. Последние кроме обмотки НН и ВН имеют обмотку СН (среднего напряжения). Трехобмоточный силовой трансформатор позволяет снабжать потребителей электроэнергией разных напряжений. Обмотка, включенная в сеть источника электроэнергии, называется первичной, а обмотка, к которой присоединены электроприемники,— вторичной.
В рассматриваемых распределительных устройствах и подстанциях промышленных предприятий применяют трехфазные двухобмоточные понижающие трансформаторы, преобразующие напряжение 6 и 10 кВ в 0,23 и 0,4 кВ.
В зависимости от изолирующей и охлаждающей среды различают трансформаторы масляные ТМ и сухие ТС. В масляных основной изолирующей и охлаждающей средой являются трансформаторные масла, в сухих — воздух или твердый диэлектрик. В специальных случаях применяют трансформаторы с заполнением баков негорючей жидкостью — совтолом.
Основой конструкции трансформатора служит активная часть, состоящая из магнитопровода 4 (рис. 1) с расположенными на нем обмотками низшего напряжения 3 и высшего напряжения 2 отводов и переключающего устройства. Магнитопровод, набранный из отдельных тонких листов специальной трансформаторной стали, изолированных друг от друга покрытием, состоит из стержней, верхнего и нижнего ярма. Такая конструкция способствует уменьшению потерь на нагрев от перемагничивания (гистерезис) и вихревых токов.
Соединительные провода, идущие от концов обмоток и их ответвлений, предназначенные для регулирования напряжения, называют отводами, которые изготовляют из неизолированных медных проводов или проводов, изолированных кабельной бумагой либо гетинаксовой трубкой.
Переключающие устройства обмоток трансформатора служат для ступенчатого изменения напряжения в определенных пределах, поддерживания номинального напряжения на зажимах вторичной обмотки при изменении напряжения на первичной или вторичной обмотке. С этой целью обмотки ВН трансформаторов снабжают регулировочными ответвлениями, которые подсоединяют к переключателям.


Рис. 1. Активная часть трансформатора серии ТМ: 1 — ярмо, 2 и 3 — обмотки ВН и НН, 4 — магнитопровод
Необходимость регулирования вызвана тем, что в электросистемах возможны различные отклонения от нормального режима электроснабжения, приводящие к неэкономичной работе приемников, преждевременному износу и сокращению сроков их службы. Особенно чувствительны к повышению напряжения электролампы, радиолампы и лампы телевизоров: срок их службы резко сокращается при систематическом увеличении напряжения.

В трансформаторах могут быть два вида переключений ответвлений: под нагрузкой — РПН (регулирование под нагрузкой) и без нагрузки после отключения трансформатора — ПБВ (переключение без возбуждения). С помощью ПБВ и РПН можно поддерживать напряжение, близким к номинальному во вторичных обмотках трансформаторов.
Переключение осуществляют изменением числа витков с помощью регулировочных ответвлений обмоток, т. е. изменением коэффициента трансформации, который показывает, во сколько раз напряжение обмотки ВН больше напряжения обмотки НН или во сколько раз число витков обмотки ВН больше числа витков обмотки НН. Пределы регулирования вторичных напряжений для разных трансформаторов различны: на ±10% 12 ступенями по 1,67% или 16 ступенями по 1,25% с помощью РПН; на ±5% четырьмя ступенями по 2,5% с помощью ПБВ.
Бак трансформатора, в который погружена активная часть, представляет собой стальной резервуар овальной формы, заполненный трансформаторным маслом. Масло, являясь охлаждающей средой, отводит теплоту, выделяющуюся в обмотках и магнитопроводе, и отдает ее в окружающую среду через стенки и крышку бака. Кроме охлаждения активной части трансформатора масло повышает степень изоляции между токоведущими частями и заземленным баком.
Для увеличения поверхности охлаждения трансформатора баки изготовляют ребристыми, вваривают в них трубы или снабжают съемными радиаторами (только у трансформаторов мощностью до 25 кВ-А стенки бака гладкие). Радиаторы присоединяют к стенкам бака патрубками со специальными радиаторными кранами. У верхнего торца бака к его стенкам приваривают раму из угловой или полосовой стали, к которой крепят крышку на прокладках из маслоупорной резины.
В нижней части бака всех типов трансформаторов имеется кран для взятия пробы и слива масла, а в его днище (в трансформаторах мощностью выше 100 кВ-А) — пробка для спуска осадков после слива масла через кран. Второй кран устанавливают на крышке бака, через который заливают в него масло. Оба крана служат одновременно для присоединения к ним маслоочистительных аппаратов.
К дну баков трансформаторов массой выше 800 кг приваривают тележку с поворотными катками, конструкция крепления которых позволяет изменять направление передвижения трансформаторов с поперечного на продольное. Для подъема трансформатора на баке имеется четыре кольца-рыма. Активная часть поднимается за скобы в верхних консолях магнитопровода.
На крышке бака размещены вводы, расширитель и защитные устройства (выхлопная предохранительная труба, реле давления, газовое реле, пробивной предохранитель). К стенкам бака приваривают подъемные крюки, прикрепляют манометрический сигнализатор (у трансформаторов мощностью свыше 1000 кВ- А) и устанавливают фильтры. Трансформатор серии ТМ-1000-10 показан на рис. 2.


Рис. 2. Трехфазный силовой трансформатор мощностью 1000 кВ А с масляным охлаждением:
1 — бак, 2 и 5 — нижняя и верхняя ярмовые балки магнитопровода, 3 — обмотка ВН, 4 — регулировочные отводы к переключателю, 6 — магнитопровод, 7 — деревянные планки, 8 — отвод от обмотки ВН, 9 — переключатель, 10 — подъемная шпилька, 11 — крышка бака, 12 — подъемное кольцо (рым), 13 и 14 — вводы ВН и НН, 15 — предохранительная труба, 16 — расширитель (консерватор), 17 — маслоуказатель, 18 — газовое реле, 19 — циркуляционные трубы, 20 — маслоспускной кран, 21 — катки

Вводы 14 и 15 представляют собой фарфоровые проходные изоляторы, через которые выводы обмоток трансформатора присоединяются к электрическим сетям.
Большинство трансформаторов оборудовано расширителями (рис. 3), обеспечивающими постоянное заполнение бака маслом и уменьшающими поверхность соприкосновения масла с воздухом, следовательно, защищающими масло от увлажнения и окисления. У расширителя есть отверстие для всасывания и вытеснения воздуха при изменении уровня содержащегося в нем масла (дыхательная пробка).

Рис. 3. Расширитель:

1 — бак расширителя, 2 — маслоуказатель, 3 — маслоуказательное стекло, 4 — угольник, 5 — запирающий болт, 6 — крышка трансформатора, 7 — газовое реле, 8 — плоский кран, 9 — трубопровод, 10— опорная пластина

Расширитель имеет цилиндрическую форму, закрепляется на кронштейне, установленном на крышке 6 трансформатора, и сообщается с баком трансформатора трубопроводом, не выступающим ниже внутренней поверхности крышки трансформатора и заканчивающимся внутри расширителя выше его дна во избежание попадания осадков масла в бак 1. Внутренняя поверхность расширителя имеет защитное покрытие, предохраняющее масло от соприкосновения с металлической поверхностью и расширитель от коррозии. В нижней части расширителя имеется пробка для слива масла из него.

Объем расширителя определяют так, чтобы уровень масла оставался в его пределах как летом при 35 °С и полной нагрузке трансформатора, так и зимой при минимальной температуре масла и отключенном трансформаторе. Обычно объем расширителя составляет 11 —12% объема масла в баке трансформатора. Для наблюдения за уровнем масла на боковой стенке расширителя устанавливают маслоуказатель 2, выполненный в виде стеклянной трубки в металлической оправе.
Емкость расширителя должна обеспечивать постоянное наличие в нем масла при всех режимах работы трансформатора от отключенного состояния до номинальной нагрузки и при колебаниях температуры окружающего воздуха, причем при допустимых перегрузках масло не должно выливаться.
В герметичных масляных трансформаторах и трансформаторах с жидким негорючим диэлектриком поверхность масла защищают сухим азотом, а в заполненных совтолом -10 — сухим воздухом. Негерметичные масляные трансформаторы мощностью 160 кВ- А и более, в которых масло в расширителе соприкасается с окружающим воздухом, имеют термосифонный или адсорбционный фильтр, а трансформаторы мощностью 1 мВ • А и более с естественным масляным охлаждением и азотной подушкой — термосифонный фильтр (кроме трансформаторов с жидким негорючим диэлектриком).
Масляные трансформаторы мощностью 1 мВ * А и более с расширителем снабжают защитным устройством, предупреждающим повреждение бака при внезапном повышении внутреннего давления более 50 к Па. К защитным устройствам относят выхлопную трубу со стеклянной диафрагмой и реле давления. Масляные трансформаторы и трансформаторы с жидким диэлектриком с азотной подушкой без расширителя имеют реле давления, срабатывающее при повышении внутреннего давления более 75 кПа.
Нижний конец выхлопной трубы соединяют с крышкой бака, а на верхний ее конец устанавливают тонкую стеклянную мембрану (от 2,5 до 4 мм) диаметром 150, 200 и 250 мм, которая разрушается при определенном давлении и дает выход газу и маслу наружу раньше, чем произойдет деформация бака. Реле давления размещают на внутренней стороне крышки трансформатора. Основными его элементами являются ударный механизм и стеклянная диафрагма. При достижении определенного давления в баке механизм срабатывает, разбивает диафрагму и обеспечивает свободный выход газам.
Трансформаторы мощностью 1 мВ * А и более, имеющие расширитель, снабжают газовым реле, которое реагирует на повреждения внутри бака трансформатора (электрический пробой изоляции, витковое замыкание, местный нагрев магнитопровода), сопровождающиеся выделением газа или резким увеличением скорости перетекания масла из бака в расширитель. Выделение газообразных продуктов происходит в результате разложения масла и других изоляционных материалов под действием высокой температуры, возникающей в месте повреждения. На этом явлении основана работа газовой защиты трансформатора от внутренних повреждений, сопровождающихся выделением газов при их утечке, утечке масла и попадании воздуха в бак. Основной элемент этой защиты — газовое реле, устанавливаемое обычно на трубопроводе, который соединяет расширитель с баком, имеющим наклон к горизонтали от 2 до 4 В газовом реле имеются две пары контактов для работы на сигнал или отключение.
Пробивные предохранители служат для защиты от пробоя обмоток ВН на обмотки НН. Устанавливают их на крышке бака и подсоединяют к нулевому вводу НН, а при напряжении 690 В — к линейному вводу.
При пробое изоляции между обмотками ВН и НН промежуток между контактами, в котором проложены тонкие слюдяные пластины с отверстиями, пробивается и вторичная обмотка оказывается соединенной с землей.
Для заземления трансформаторов служит специальный заземляющий контакт с резьбой не менее Ml2, расположенный в доступном месте нижней части бака со стороны НН и обозначенный четкой несмывающейся надписью «Земля» или знаком заземления. Поверхность заземляющего контакта должна быть гладкой и зачищенной; заземление осуществляют подсоединением стальной шины сечением не менее 40><4 мм.
Для измерения температуры масла на трансформаторах монтируют ртутные термометры со шкалой от 0 до 150° С или термометрические сигнализаторы ТС со шкалой от 0 до 100° С. Последние снабжены двумя передвижными контактами, которые можно установить на любую температуру в пределах шкалы. Первый контакт, будучи включенным в сигнальную цепь, при определенной температуре масла дает сигнал; в случае дальнейшего повышения температуры масла второй контакт, соединенный с реле, отключает трансформатор. На трансформаторах мощностью 6300 кВ * А и выше установлены термометры сопротивления.
Для сушки и очистки увлажненного и загрязненного воздуха, поступающего в расширитель при температурных колебаниях масла, все трансформаторы снабжены воздухоочистительным фильтром — воздухоосушителем (рис. 4), который представляет собой цилиндр, заполненный силикагелем и размещенный на дыхательной трубке 1 расширителя.


Рис. 4. Воздухоочистительный фильтр (воздухоосушитель):
1 — дыхательная трубка, 2 — соединительная муфта, 3 — смотровое окно, 4 — бак трансформатора, 5 — масляный затвор, 6 — указатель уровня масла в затворе, 7— кронштейн
В нижней части цилиндра расположен масляный затвор 5 для очистки засасываемого воздуха, в верхней части — патрон с индикаторным силикагелем, который при увлажнении меняет свою окраску с голубой на розовую.
Для поддержания изоляционных свойств масла, а следовательно, продления срока его службы предназначен термосифонный фильтр (рис. 5), представляющий собой цилиндрический аппарат, заполненный активным материалом — сорбентом (поглотителем продуктов старения масла).


Рис. 5. Термосифонный фильтр:
1 — радиаторные краны, 2 — загрузочный люк, 3 — пробка с отверстием для выпуска воздуха, 4 — силикагель, 5 — сетка, 6 — дно с отверстиями, 7,8 — пробки для отбора пробы масла и его слива, 9 — корпус фильтра, 10 — стенка бака трансформатора
Фильтр присоединяют к баку трансформатора двумя патрубками и промежуточными плоскими кранами. Работа фильтра основана на термосифонном принципе: более нагретое масло верхних слоев, проходя через охлаждающее устройство, опускается вниз. Параллельно радиаторам подсоединен термосифонный фильтр. Следовательно, через фильтр масло проходит сверху вниз и непрерывно очищается. Фильтры устанавливают на трансформаторах мощностью 160 кВ * А и выше.
Особенности конструкции сухих трансформаторов. Масляный трансформатор взрыво- и пожароопасен, поэтому, когда из-за пожарной безопасности недопустимы масляные трансформаторы, используют сухие или трансформаторы с негорючим заполнителем (совтолом, пиранолом, кварцевым песком). Поскольку отсутствует масло, сухие трансформаторы можно устанавливать непосредственно в цехах промышленных предприятий без устройства специальных трансформаторных камер.
Силовые трехфазные сухие трансформаторы ТСЗ (рис. 6) в защищенном исполнении изготовляют мощностью от 160 до 1600 кВ * А, обмотки которых имеют класс напряжения 6—10 кВ для ВН и 0,23; 0,4 и 0,69 кВ для НН. Применяют также сухие трансформаторы мощностью менее 160 кВ- А (25, 40, 66, 100 кВ- А).
Условное обозначение трансформаторов. Обозначения типов трансформаторов построены по определенной системе, отражающей конструкцию (буквы) и основные электрические параметры (цифры). Буквенные обозначения следующие: первая буква — число фаз (О — однофазный, Т — трехфазный), вторая или две — вид охлаждения (М — естественное масляное, С — сухое без масла, Д — дутьевое, Ц — циркуляционное, ДЦ — принудительное циркуляционное с дутьем), третья — число обмоток (Т — трехобмоточный). В условном обозначении могут быть другие буквы, указывающие конструктивные особенности трансформатора.

Рис. 6. Силовой трехфазный сухой трансформатор ТСЗ:
I — активная часть, 2 — ввод ВН, С, 9 — коробки ввода ВН и НН, 4 — крышка люка, 5 — кожух, 6 и 8 — кольцо и пластина для подъема трансформатора, 7 — шины НН, 10 — тележка, 11 — каток
Первая цифра, стоящая после буквенного обозначения трансформатора, показывает номинальную мощность (кВ- А), вторая — номинальное напряжение обмотки ВН (кВ). В последнее время добавляют еще две цифры, означающие год разработки трансформатора данной конструкции, например обозначение трансформатора ТМ-1000/10—93 расшифровывается так: трехфазный, двухобмоточный с естественным масляным охлаждением, мощностью 1000 кВ • А и напряжением обмотки ВН 10 кВ, конструкции 1993 г.

Ещё по теме:

silovoytransformator.ru

Силовые трансформаторы 10(6)/0,4 кв области применения разных схем соединения обмоток

Отсутствие у изготовителей и заказчиков определенного представления принципиальных отличий свойств силовых трансформаторов с малой мощностью и разными схемами соединения обмоток ведет к их неправильному использованию. При этом некорректный выбор схемы соединения обмоток ухудшает технические показатели электрических установок и понижает качество электроэнергии, а также приводит к возникновению серьезных аварий.

Это отмечают проектировщики из Нижнего Новгорода Алевтина Ивановна Федоровская и Владимир Семенович Фишман. Они в своем материале делают акцент на разнице в реакции трансформаторов на несимметричные токи, которые содержат составляющую нулевой последовательности.

Схемы соединения обмоток и свойства трансформаторов

В соответствии с ГОСТ 11677-85 [1] силовые трансформаторы 10(6)/0,4 кВ мощностью от 25 до 250 кВА могут изготавливать с такими схемами соединения обмоток:
  • «звезда/звезда» – Y/Yн;
  • «треугольник–звезда» – D/Yн;
  • «звезда–зигзаг» – Y/Zн.
Ключевое отличие технических характеристик трансформаторов с разными схемами соединений обмоток - различная реакция на несимметричные токи, которые содержат составляющую нулевой последовательности. В основном это однофазные сквозные короткие замыкания и рабочие режимы с неравномерной загрузкой фаз.

Известно, что силовые трансформаторы 6(10)/0,4 кВ имеют трехстержневой стальной сердечник, с расположенными там первичной и вторичной обмотки фазы А, В и С. Магнитные потоки трех фаз в симметричных режимах циркулируют в сердечнике трансформатора и не выходят за его пределы.

Что происходит во время нарушения симметрии с преимуществом нагрузки одной фазы на стороне 0,4 кВ? Подобные режимы работы исследуются с применением теории симметричных составляющих [2]. По ней каждый несимметричный режим работы трехфазной сети представлен как геометрическая сумма 3 симметричных составляющих тока и напряжения: составляющие прямой, нулевой и обратной последовательностей.

Максимальная однофазная несимметрия достигается в режиме однофазного короткого замыкания на стороне 0,4 кВ трансформатора со схемой соединения обмоток D/Yн.

Картина токов симметричных составляющих в обмотках в таком режиме показана на рис. 1. В неповрежденных фазах на стороне 0,4 кВ геометрическая сумма трех симметричных составляющих тока приравнена нулю (не учитываем рабочую нагрузку фаз). В поврежденной фазе она достигает максимума и равняется току ОКЗ. Определяется она по формуле:

где Uл – линейное напряжение;

R1, R0, X1, Х0 – соответственно активные и реактивные сопротивления прямой и нулевой последовательности.

Сопротивления прямой последовательности

Сопротивления прямой последовательности R1 и X1 трансформаторов с разными схемами соединения обмоток определяются теми же формулами и имеют несущественные различия:


В каталогах видно, что известные величины в этих формулах Ркз и Uк почти не зависят от схем соединения обмоток трансформатора, а значит, не влияют на сопротивление прямой последовательности. Сопротивления же нулевой последовательности трансформаторов с различными схемами соединения обмоток имеют принципиальные отличия.

Сопротивления нулевой последовательностивекторов токов и магнитных потоков в трансформаторе со схемой соединения обмоток D/Yн (рис. 2). 

В таких трансформаторах токи прямой, обратной и нулевой последовательностей текут и в первичной, и во вторичной обмотках. В то время как токи нулевой последовательности в первичной обмотке замыкаются внутри нее, не выходя при этом в сеть. Намагничивающие силы или ампер-витки, которые создают токи нулевой последовательности первичных и вторичных обмоток, имеют встречное направление и практически полностью компенсируют друг друга, обуславливая тем самым небольшую величину реактивных сопротивлений трансформатора. А сопротивления прямой и нулевой последовательностей приблизительно равны: R1 = R0; Х1 = Х0
В трансформаторах со схемой соединения обмоток Y/Zн в аналогичном режиме ОКЗ токи нулевой последовательности протекают лишь по вторичной обмотке трансформатора, однако магнитного потока нулевой последовательности они не создают, что объясняется особенностью схемы Zн – «зигзаг». 
Эта особенность состоит в том, что на каждом стержне трансформатора расположено по одной вторичной полуобмотке двух разных фаз (рис. 3). В режиме ОКЗ намагничивающие силы, создаваемые токами нулевой последовательности в этих полуобмотках, направлены встречно и друг друга взаимно компенсируют. При этом токи нулевой последовательности в первичной обмотке отсутствуют. В таких трансформаторах сопротивления нулевой последовательности оказываются меньше сопротивлений прямой последовательности: R0 < R1; Х0 < Х1.

Рис. 1. Токи симметричных составляющих в обмотках трансформатора в режиме однофазного короткого замыкания

IA21, IA22, IA20, IB21, IB22, IB20, IC21, IC22, IC20 – токи фаз А, В, С прямой, обратной и нулевой последовательностей вторичной обмотки;
IA11, IA12, IA10, IB11, IB12, IB10, IC11, IC12, IC10 – токи фаз А, В, С прямой, обратной и нулевой последовательностей первичной обмотки.

Рис. 2. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток D/Yн

Рис. 3. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток Y/Zн 

 

Из формулы (1) следует, что это обеспечивает большую величину тока ОКЗ у трансформаторов со схемами Y/Zн по сравнению с трансформаторами со схемами D/Yн. 

Альтернативой трансформаторам со схемой Y/Z являются трансформаторы ТМГсу со схемой Y/Yn-0 со специальной встроенной симметрирующей обмоткой (СУ). Устройство было разработано кафедрой электроснабжения сельского хозяйства БАТУ, УП МЭТЗ им. В.И. Козлова и Минскэнерго, и теперь является неотъемлемой частью трансформатора со схемой У/Ун.

Симметрирующее устройство представляет собой отдельную обмотку, уложенную в виде бандажа поверх обмоток высшего напряжения трансформатора со схемой соединения обмоток У/Ун. Обмотка симметрирующего устройства рассчитана на длительное по ней протекание номинального тока трансформатора, т.е. на полную номинальную однофазную нагрузку.

Обмотка симметрирующего устройства включена в рассечку нулевого провода трансформатора из расчета того, что при несимметричной нагрузке и появлении тока в нулевом проводе трансформатора, а также связанного с ним потока нулевой последовательности, поток, создаваемый симметрирующим устройством равный по величине и направленный в противоположном направлении, компенсирует действие потока нулевой последовательности, предотвращая этим самым перекос фазных напряжений.

Схема подсоединения обмотки симметрирующего устройства (СУ) к обмоткам НН: 

 

Трансформаторы с СУ улучшают работу защиты, повышают безопасность электрической сети. В них резко снижено разрушающее воздействие на обмотки токов при однофазных коротких замыканиях.

СУ значительно улучшает синусоидальность напряжения при наличии в сети нелинейных нагрузок, что крайне важно при питании многих чувствительных приборов, например, эвм, автоматики, телевизоров.

Трансформаторы ТМГ с симметрирующим устройством ТМГсу.

Теперь обратимся к трансформаторам со схемой соединения обмоток Y/Yн. Как известно, в обмотках, соединенных в звезду без выведенной нулевой точки, токи нулевой последовательности протекать не могут. Поэтому в режиме ОКЗ токи этой последовательности протекают только во вторичной обмотке трансформатора. 

Совпадающие по фазе магнитные потоки нулевой последовательности, создаваемые токами вторичной обмотки, выходят за пределы магнитного сердечника и замыкаются через металлический кожух трансформатора (рис. 4). Это определяет значительно большую величину сопротивлений нулевой последовательности таких трансформаторов: R0 >> R1; X0 >> X1.

Рис. 4. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток Y/Yн

Следует отметить, что в отличие от сопротивлений прямой последовательности трансформаторов, которые можно рассчитать, сопротивления нулевой последовательности трансформаторов со схемами соединения обмоток Y/Yн расчету не поддаются. Их можно определить только экспериментально. Величина этих сопротивлений во многом зависит от конструкции кожуха трансформатора, от величины зазоров между сердечником и кожухом и т.п. 

Схема замера сопротивлений нулевой последовательности приведена в ГОСТ 3484.1-88 [3]. К сожалению, в этом документе указано, что такие замеры предприятия-производители проводят по просьбе заказчиков. Вероятно, в последние годы таких просьб от заказчиков не поступает, а изготовители эти замеры самостоятельно не производят, считая, что в них нет необходимости. В результате проектировщики при выполнении расчетов пользуются старыми справочными данными. Однако использовать устаревшую информацию надо чрезвычайно осторожно, ведь конструкции современных силовых трансформаторов, в частности кожухов, а также материалы, из которых они изготовлены, существенно изменились. 

Кроме того, имеющиеся на сегодня данные по сопротивлениям нулевой последовательности трансформаторов крайне скудны и противоречивы. Так, согласно замерам УП МЭТЗ им. В.И. Козлова, выполненным много лет назад, реактивные сопротивления нулевой последовательности трансформаторов со схемами соединения обмоток Y/Yн превышают сопротивления прямой последовательности в среднем в 10 раз. В то же время в ГОСТ 3484.1-88 имеется фраза о том, что эти сопротивления могут отличаться на два порядка. И этим сегодня противоречия не исчерпываются[4].

Почему необходимо знать реальные значения сопротивлений?

Реальные значения сопротивлений нулевой последовательности знать необходимо, поскольку они определяют величину тока ОКЗ. Чем больше эти сопротивления, тем меньше ток ОКЗ, соответственно труднее осуществить защиту трансформатора. 
В нормальных режимах работы большие сопротивления нулевой последовательности при неравномерной загрузке фаз трансформатора на стороне 0,4 кВ приводят к ухудшению качества электроэнергии у потребителя. 
Так, если принять R1 = R0, X1 = X0, что характерно для трансформаторов со схемами соединения обмоток D/Yн, то получим:

Таким образом, при этих условиях ток ОКЗ на выводах 0,4 кВ трансформатора будет равен току трехфазного КЗ.
Однако, если R0>>R1 и X0>>X1, что характерно для трансформаторов со схемами соединения обмоток Y/Yн, то величина тока ОКЗ оказывается значительно меньше тока трехфазного КЗ, то есть Iокз3фкз. Какие при этом могут возникнуть трудности с защитой, особенно если она выполнена со стороны обмотки ВН предохранителями 6(10) кВ, можно показать на конкретном примере.
На рис. 5 изображена схема подключения трансформатора 100 кВА, 6/0,4 кВ питания собственных нужд (ТСН) ПС 110/35/6 кВ. На ПС с переменным оперативным током такие трансформаторы устанавливаются на ОРУ и подключаются к воздушному вводу, идущему от силового трансформатора к вводной ячейке ЗРУ-6(10) кВ. Защита трансформатора, включая кабель 0,4 кВ до щита 0,4 кВ, выполняется предохранителями 6 кВ. Токи КЗ в конце защищаемой предохранителями зоны – при вводе на щит 0,4 кВ приведены в табл. 1. Как из нее видно, минимальное значение тока КЗ через предохранители 6 кВ имеет место при однофазном замыкании на стороне 0,4 кВ.

Таблица 1. Токи короткого замыкания в конце защищаемой предохранителями зоны за трансформатором 100 кВА, 6/0,4 кВ, D/Yн при вводе на щит 0,4 кВ

Рис. 5. Схема подключения трансформатора 100 кВА, 6/0,4 кВ для питания собственных нужд ПС 110/35/6 кВ

Согласно существующим рекомендациям по условиям отстройки от броска тока намагничивания трансформатора мощностью 100 кВА номинальный ток предохранителей принимается равным Iн.пр = (2 ÷ 3) Iн.тр. В данном случае Iн.пр 2 ·10 А 20. Принимаем Iн.пр = 20 А.

Минимальный отключаемый ток предохранителем типа ПКТ-6 кВ, 20 А согласно каталожным данным составляет Iмин.откл.пр = 240 А, что значительно больше токов КЗ, приведенных в табл. 1.
Таким образом, защита предохранителями типа ПКТ 6 кВ оказывается нечувствительной. Более того, при протекании тока КЗ ниже минимально отключаемого, предохранитель не только не защищает оборудование, но и разрушается сам, вызывая аварию.
В качестве защитного аппарата можно рассмотреть возможность использования предохранителей зарубежных фирм, например марки Merlin Gerin. Номинальный ток предохранителя специалисты компании рекомендуют выбирать из условия Iпр. 0,1с 12 Iном.тр.Пользуясь времятоковой зависимостью, приведенной в [5], определяем, что этому условию удовлетворяет предохранитель Fusarc c номинальным током 20 А, минимальный ток отключения которого равен 55 А. Казалось бы, этот предохранитель надежно защищает электрооборудование, т.к. минимально отключаемый им ток меньше минимального тока КЗ: 62 А 55 А. Однако время отключения данным предохранителем тока КЗ, равного 62 А, составляет 7 с. При таком длительном времени необходимо учитывать эффект спада тока, вызванный увеличением активного сопротивления кабеля вследствие его нагрева [6]. В результате спада тока его значение приближается к минимальному току отключения предохранителя –55 А, что делает защиту ненадежной.
Улучшить надежность защиты можно путем применения силового трансформатора 6/0,4 кВ со схемой соединения обмоток Y/Zн. В этом случае минимальный ток короткого замыкания через предохранители увеличивается до 80 А, а время его отключения предохранителем сокращается до 0,6 с и защита становится достаточно надежной.
Если же в рассмотренном примере будет применен трансформатор со схемой соединения обмоток Y/Yн, то минимальный ток КЗ через предохранители составит лишь 22 А. Очевидно, что защитить электрооборудование предохранителями 6 кВ при таком токе невозможно. Недостатки трансформаторов со схемой соединения обмоток Y/Yн проявляются и в нормальных режимах работы при неравномерной загрузке фаз. Потери напряжения в более загруженной фазе могут резко возрасти по сравнению с менее за-груженными фазами, особенно при большой загрузке трансформатора и низком cos j нагрузки.
Однако означает ли всё вышесказанное, что трансформаторы со схемой соединения обмоток Y/Yн не должны изготавливаться вообще? Представляется, что это не так. Не всегда большая величина сопротивления нулевой последовательности трансформатора является недостатком. Например, при применении трансформаторов более 1000 кВА может возникнуть проблема устойчивости однофазной коммутационной аппаратуры 0,4 кВ к току ОКЗ. В этом случае большая величина сопротивления нулевой последовательности трансформатора со схемой Y/Yн поможет решить эту проблему.
Что же касается защиты таких трансформаторов, то она решается с помощью релейной защиты и выключателя 6(10) кВ, а с низкой стороны – с помощью вводного автомата.

Выводы

Для трансформаторов малой мощности (от 25 до 250 кВА), защищаемых предохранителями со стороны ВН, безусловное преимущество имеет схема соединения обмоток Y/Zн. Несколько меньший эффект дает схема D/Yн. Схему Y/Yн для таких трансформаторов применять не следует.
Схема соединения обмоток трансформаторов Y/Yн может применяться в сравнительно редких случаях для более мощных трансформаторов при необходимости ограничения тока однофазного КЗ с целью повышения устойчивости коммутационной аппаратуры.
Предприятиям-изготовителям силовых трансформаторов следует в обязательном порядке производить замеры их сопротивлений нулевой последовательности.

ЛИТЕРАТУРА

1. ГОСТ 11677-85. Трансформаторы силовые. Общие технические условия.
2. Ульянов С.А. Короткие замыкания в электрических системах. – М.: Госэнергоиздат, 1952. – 280 с.
3. ГОСТ 3484.1-88 (СТ СЭВ 1070-78). Трансформаторы силовые. Методы электромагнитных испытаний
4. Справочник по проектированию электроснабжения, линий электропередачи и сетей / Под ред. Большама Я.М., Круповича В.И., Самовера М.Л. и др. – М.: Энергия, 1975. – 696 с.
5. Каталог на предохранители Fusarc Merlin Gerin (стандарт DIN).
6. ГОСТ 28249-93. Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ.

_________________________________________________________________________________

Компания ООО Энетра Текнолоджиз на правах дилера ОАО МЭТЗ им. В. И. Козлова осуществляет продажу трансформаторов средней мощности. В нашем каталоге вы найдете сухие трансформаторы ТС, ТСЗ и ТСГЛ, масляные трансформаторы ТМ и ТМГ, а также специализированные трансформаторы различного назначения. Мы рады доставить выбранные вами трансформаторы по всей Сибири и СФО. Доставка трансформаторов осуществляется нами не только по СФО, но и по Дальнему Востоку.

www.enetra.ru

Трансформаторы напряжения для сетей 6–10 кв. Причины повреждаемости





Особенность российских электрических сетей 10(6) кВ, не имеющих глухого заземления нейтрали, состоит в том, что они могут некоторое время работать с однофазным замыканием на землю. При этом изменяются только напряжения отдельных фаз относительно земли, а треугольник междуфазных напряжений остается неизменным. Это позволяет потребителям никак не реагировать на наличие замыкания на землю и продолжать работу в обычном режиме. А электросетевое эксплуатационное предприятие обязано найти и отремонтировать поврежденный участок. Выполнение этой задачи во многом зависит от типа используемых трансформаторов напряжения (ТН).
Применяемые в настоящее время ТН делятся на заземляемые и незаземляемые. Незаземляемые ТН, в отличие от заземляемых, не имеют соединений первичной обмотки с землей. Заземляемые ТН, помимо междуфазных напряжений, могут трансформировать напряжения отдельных фаз относительно земли и тем самым контролировать изоляцию сети. Указанное обстоятельство определило сферу использования этих видов ТН в сетях 10(6) кВ:
  • незаземляемые ТН преимущественно устанавливаются непосредственно на стороне высокого напряжения (ВН) силовых потребительских трансформаторов в ТП 10(6) кВ,
  • заземляемые – на сборных шинах центров питания (ЦП) и распределительных пунктах (РП).

ТРАНСФОРМАТОРЫ НАПРЯЖЕНИЯ ДЛЯ СЕТЕЙ 6–10 КВ
ПРИЧИНЫ ПОВРЕЖДАЕМОСТИ

Незаземляемые ТН
Такие ТН включаются между фазами сети и бывают либо однофазными (типа НОЛ, НОМ), либо трехфазными (типа НТМК). Они имеют только одну вторичную обмотку с наивысшим классом точности 0,2 или 0,5, что вполне приемлемо для питания коммерческих счетчиков электроэнергии.
При этом следует помнить, что класс точности ТН гарантируется только при определенных условиях эксплуатации. В частности, фактическая нагрузка при cosj = 0,8 должна быть симметричной и находиться в пределах от 25 до 100% от номинальной мощности. Если фактическая нагрузка меньше 25%, что характерно для применения электронных счетчиков с малым потреблением, то ее следует искусственно увеличить. Если же она больше 100%, то ТН переходит в низший класс точности.

Заземляемые ТН
Они включаются между фазами сети и землей и также производятся в однофазном (типа ЗНОЛ) или трехфазном (типа НТМИ, НАМИ, НАМИТ) исполнении. Когда три однофазных ТН собираются в трехфазную группу, она становится эквивалентной одному трехфазному ТН. Заземляемые трехфазные ТН выполняют все функции незаземляемых ТН плюс контроль изоляции сети. Для этого, помимо выводов трех фаз а, в и с у основной вторичной обмотки, они имеют вывод нейтрали о. Кроме того, имеется еще дополнительная обмотка аД-хД.
При нормальном симметричном режиме фазные напряжения ао, во и со равны 57,8 (100/Ц3) В, междуфазные ав, вс и са равны 100 В, а на выводах дополнительной вторичной обмотки имеется небольшое напряжение небаланса. При однофазных металлических замыканиях сети на землю одно из фазных напряжений снижается до нуля, а два других повышаются до 100 В. Междуфазные напряжения сохраняются неизменными, а напряжение дополнительной вторичной обмотки повышается до 100 В.
Наивысший класс точности заземляемых ТН при измерении междуфазных напряжений также составляет 0,2 или 0,5 при симметричной нагрузке от 25 до 100% от номинальной с cos j = 0,8. Однако согласно ГОСТ 1983-2001 он не гарантируется при однофазном замыкании сети на землю. В этом отношении заземляемые ТН уступают незаземляемым.
Класс точности ТН при измерении фазных напряжений может быть снижен до 3,0, т.к. в данном случае они предназначены для питания щитовых вольтметров контроля изоляции и не используются для питания счетчиков электрической энергии.
Следует упомянуть тот факт, что благодаря своей универсальности заземляемые ТН в последнее время получили неоправданно широкое распространение в российских электросетях. Их стали устанавливать даже в ТП у потребителя, где контроль изоляции не нужен. При этом забывается, что они более материалоемки и стоят дороже. Кроме того, заземляемые ТН из-за своей связи с землей подвержены разнообразным опасным воздействиям со стороны сетей и для обеспечения своей надежности нуждаются в квалифицированном подходе. В частности, заземляемый вывод Х обмотки ВН должен быть обязательно заземлен даже тогда, когда контроль изоляции не нужен.

Конструкция незаземляемых ТН
Незаземляемые ТН представляют собой трансформаторы малой мощности (обычно менее 1 кВА) с большим количеством витков тонкого провода обмотки ВН. Необходимый класс точности обеспечивается точностью намотки числа витков обмоток (амплитудная погрешность) и выбором сниженного значения номинальной индукции в стали магнитопровода (угловая погрешность). При высоких номинальных индукциях применяется коррекция угловой погрешности (НТМК).

Конструкция заземляемых ТН
Они также имеют большое число витков тонкого провода обмотки ВН и малую предельную мощность. Малая мощность ТН легла в основу широко распространенного представления о том, что они не могут сколько-нибудь существенно повлиять на режим работы основной сети 10(6) кВ, которая питает потребителей суммарной мощностью в тысячи и десятки тысяч кВА.
Исходя из этого представления, конструировались все ТН для сетей 10(6) кВ. Например, трехфазный заземляемый ТН типа НТМИ-10(6)-54 представляет собой переконструированный трехфазный трехстержневой незаземляемый ТН типа НТМК путем добавления к его магнитопроводу двух боковых стержней, по которым могут замыкаться потоки нулевой последовательности. При дальнейших исследованиях выяснилось, что выгоднее для каждой отдельной первичной обмотки, включенной между фазой сети и землей, иметь свой магнитопровод, т.е. перейти к трехфазной группе однофазных трансформаторов. В литом исполнении изоляции – это группа трех ТН типа ЗНОЛ-10(6), а в масляном исполнении – это три однофазных ТН в одном баке (типа НТМИ-10(6)-66). У этих ТН междуфазные вторичные напряжения ав, вс и са образуются, как геометрическая разность двух соседних фазных напряжений ао, во и со. При однофазных замыканиях сети на землю, когда рабочее напряжение отдельных фаз превышает 120% от номинального, междуфазные напряжения могут терять высокий класс точности.

Эксплуатационные характеристики заземляемых ТН
Малая мощность ТН по сравнению с установленной мощностью силовых трансформаторов в сетях 10(6) кВ ввела в заблуждение некоторых разработчиков ТН, а представление о невозможности ТН повлиять на процессы в сети не всегда является верным.
Оказалось, что сопротивление нулевой последовательности даже самой мощной сети, благодаря изолированной нейтрали, может иногда превышать сопротивление нулевой последовательности заземляемых ТН. Это может происходить тогда, когда заземляемый ТН оказывается подключенным к сети с малым током замыкания на землю. Это могут быть либо сборные шины ЦП или РП при отключенных линиях, либо сельская сеть с несколькими десятками километров воздушных линий.
В процессе эксплуатации заземляемых ТН выявились три режима, приводящие либо к ненормальной работе ТН, либо к их повреждению.
Первый режим характерен для работы заземляемых ТН на ненагруженных шинах ЦП или РП. Малый емкостный ток замыкания шин на землю на частоте 50 Гц компенсируется намагничивающим током одной из фаз ТН. Напряжение на этой фазе повышено, и сталь магнитопровода близка к насыщению. Напряжение остальных фаз понижено. В результате создается ложное впечатление о замыкании одной из фаз на землю. Так как в феррорезонанс может войти любая из трех фаз, «ложная земля» может «переходить» с одной фазы на другую. Обычно в таком режиме ТН не повреждается. Чтобы устранить явление «ложной земли», достаточно включить на дополнительную обмотку активное сопротивление 25 Ом.
Второй режим возникает при однофазных дуговых замыканиях на землю в сельских сетях. Благодаря воздушным линиям, они имеют небольшой (до 10А) ток замыкания на землю и открытую перемежающуюся дугу, подверженную действию ветра, что способствует ее попеременному зажиганию и гашению. В таком режиме емкость нулевой последовательности сети в бестоковую паузу перемежающейся дуги разряжается через ТН, насыщая его магнитопроводы и перегревая обмотки. Повторное зажигание дуги вновь заряжает емкость, которая затем в бестоковую паузу дуги разряжается через ТН. Такой процесс может длиться несколько минут или даже часов, в результате чего ТН нередко повреждается. Предлагалось много методов борьбы с таким развитием событий (разземление нейтрали обмотки ВН, включение в нее высокоомных резисторов или индуктивностей, подключение низкоомных резисторов на дополнительную обмотку). Однако эти меры по разным причинам не дали ожидаемых результатов.
Третий режим может возникнуть как в воздушных, так и в кабельных сетях. Это устойчивый гармонический феррорезонанс на частоте 50 Гц между емкостью нулевой последовательности сети и нелинейной индуктивностью намагничивания трехфазного трехстержневого потребительского силового трансформатора 10(6)/0,4 кВ с изолированной нейтралью обмотки ВН. Режим феррорезонанса возможен при замыкании на землю одной фазы малонагруженного трансформатора 20–400 кВА с последующим перегоранием плавкой вставки предохранителя. Напряжение нулевой последовательности сети при этом может достигать трехкратных значений, в результате чего повреждение ТН наступает менее чем за одну минуту. Наличие в сети одного или даже нескольких заземляемых ТН не может погасить данный вид феррорезонанса. Он срывается только после повреждения одного из ТН. При этом факты повреждения ТН именно из-за «внешнего» феррорезонанса, вследствие его быстротечности, очень трудно надежно зафиксировать.

Антирезонансные заземляемые ТН
После того, как попытки эффективной защиты ТН от повреждений не увенчались успехом, в 80-х годах прошлого столетия стали разрабатываться антирезонансные ТН. Принцип их работы заключается в том, что они сами не вступают в феррорезонанс (первый режим), устойчивы к перемежающейся дуге (второй режим) и к «внешнему» феррорезонансу в сети (третий режим). Правда, достичь полной антирезонансности разработчикам удалось не сразу. Так, первенец из этой серии НАМИ-10 У2 был несимметричен и иногда вступал в субгармонический (16,6 Гц) феррорезонанс с емкостью небольших сетей (первый режим), хотя в остальных режимах он был устойчив.
Антирезонансные ТН других типов, например, ЗНОЛ-10 с высокоомными резисторами в нейтрали или НАМИТ-10-2, тоже, возможно, не вполне устойчивы в одном или двух режимах. Степень их антирезонансности еще нуждается в дополнительной проверке. Остается заметить, что разработанный Раменским электротехническим заводом «Энергия» ТН типа НАМИ-10-95 выпускается с 1995 г. и случаев его неполной антирезонансности пока не наблюдалось.

Выводы:
Наиболее приемлемыми для электроснабжающих организаций, учитывающих электроэнергию и контролирующих изоляцию в сетях 10(6) кВ, являются антирезонансные заземляемые ТН. Для учета электроэнергии у потребителей достаточно применять незаземляемые ТН.


Всего комментариев: 0


ukrelektrik.com

Трансформаторы 10/0,4 Кв

Рады вам представить модификацию трансформатора на масляной основе ТМ 160 кВА 10/0 4кВ КТПГС. Эта модель трансформатора отнесена к разряду аппаратов стационарного типа. Он отнесен к силовым, понижающим и работающим от трехфазной системы аппаратуры. Сконструирована модель изделия по двухобмоточному плану, где добавлена функция натурального охлаждения от масла и с возможностью переподключения разветвлений без пробуждения. Мощность представленной модели доходит до 160 кВА, а напряжение равно 4 кВ. Такие трансформаторы широко используются в обеспечении непрерывной работы на предприятиях народного хозяйства. Также применяют схемы внутренней и внешней установки.

Трансформатор ТМ 160 кВА 10/0 4кВ работает очень качественно и надежно. Если эксплуатировать его при предусмотренных для него условиях, можно добиться максимальной высоты над уровнем моря, которая составляет 1000 м. Отличным температурным режимом для внешней установки является температура от -45 до +45 градусов С (это относится к моделям, используемым в зоне умеренного климата), влажность воздуха не должна превышать 80% (при 25°, для моделей, работающих в умеренном/холодном климате). Категорически запрещено эксплуатировать трансформатор в условиях агрессивной среды. А также в условиях сильной запыленности, при обильном испарении, если висит угроза взрыва. Нужно исключить сильные встряски и вибрации. Его нельзя подключать к электросетям, которые подвержены частому включению/отключению питания.

Допустимым напряжением первичной обмотки данной модели трансформатора (обмотка высокого напряжения) считается 4 кВ, напряжение во вторичной обмотке (низкого напряжения) можно вычислить по данным специальных таблиц, которые Вы также найдете на нашем сайте. Те же условия по эксплуатации применимы для регулировки напряжения в обмотках низкого напряжения, с дополнительным применением различной группы схем и соединений. Для этого можно применять переключатель высоковольтного напряжения, он же осуществляет работу по регулировке ступенчато. Трансформатор ТМ 160 кВА 10/0 4кВ КТПГС дополнен специальным маслорасширителем, вместительности которого хватит, чтобы обеспечить всю аппаратуру маслом во время использования трансформатора при разных режимах работы и температурных условиях в окружающей среде. Благодаря термосифонному фильтру, который содержит впитывающее вещество (сорбент силикагель) и гарантирует своевременную очистку масла.

В конструкции ТМ 160 кВА 10/0 4кВ есть система воздухосушителя, которая размещена по внешней стороне расширительного бачка. Она представлена в виде эластичной трубы из ПВХ, которую заполняют специальными сорбентами и подводят к патрубку маслоуказателя. При использовании этой системы масло остается защищенным от агрессивных воздействий наружной атмосферы. Длина такой трубки напрямую зависит от внесенного количества поглотителя влаги, который нужен для того, чтобы обеспечить безостановочную работу трансформатора.

Если Вы хотите купить трансформатор ТМ 160 кВА 10/0 4кВ, то обратитесь к нашим менеджерам по телефону, указанному на сайте либо через форму обратной связи.


www.trustindustry.ru

Силовые трансформаторы 10(6)/0,4 кВ. Области применения разных схем соединения обмоток

Отсутствие у изготовителей и заказчиков чёткого представления о принципиальных отличиях свойств силовых трансформаторов малой мощности с разными схемами соединения обмоток приводит к ошибкам в их применении. Причём неправильный выбор схемы соединения трансформаторных обмоток не только ухудшает технические показатели электроустановок и снижает качество электроэнергии, но и приводит к серьёзным авариям.

Об этом напоминают нижегородские проектировщики Алевтина Ивановна Федоровская и Владимир Семенович Фишман, которые в своём материале акцентируют внимание на разнице в реакции трансформаторов на несимметричные токи, содержащие составляющую нулевой последовательности.

 

Алевтина Федоровская, технический директор

 

Владимир Фишман, главный специалист Группы компаний «Электрощит - ТМ - Самара» Филиал «Энергосетьпроект - НН - СЭЩ», г. Нижний Новгород

Схемы соединения обмоток и свойства трансформаторов

В соответствии с ГОСТ 11677-85 [1] силовые трансформаторы 10(6)/0,4 кВ мощностью от 25 до 250 кВА могут изготавливаться со следующими схемами соединения обмоток:

- «звезда/звезда» – Y/Yн;

- «треугольник–звезда» – D/Yн;

- «звезда–зигзаг» – Y/Zн.

Принципиальное отличие технических характеристик трансформаторов с различными схемами соединений обмоток заключается в разной реакции на несимметричные токи, содержащие составляющую нулевой последовательности. Это прежде всего однофазные сквозные короткие замыкания, а также рабочие режимы с неравномерной загрузкой фаз.

Как известно, силовые трансформаторы 6(10)/0,4 кВ имеют трёхстержневой стальной сердечник, на каждом стержне которого располагаются первичная и вторичная обмотки соответствующей фазы – А, В и С. Магнитные потоки трёх фаз в симметричных режимах работы циркулируют в стальном сердечнике трансформатора и за его пределы не выходят.

Что происходит при нарушении симметрии с преобладанием нагрузки одной из фаз на стороне 0,4 кВ? Такие режимы работы исследуются с использованием теории симметричных составляющих [2]. Согласно этой теории любой несимметричный режим работы трёхфазной сети представляется в виде геометрической суммы трёх симметричных составляющих тока и напряжения: это составляющие прямой, обратной и нулевой последовательностей.

Рассмотрим режим максимальной однофазной несимметрии – режим однофазного короткого замыкания (ОКЗ) на стороне 0,4 кВ трансформатора со схемой соединения обмоток D/Yн.

Картина токов симметричных составляющих в обмотках в этом режиме представлена на рис. 1. В неповреждённых фазах на стороне 0,4 кВ геометрическая сумма трёх симметричных составляющих тока равна нулю (рабочей нагрузкой фаз пренебрегаем), а в повреждённой фазе эта сумма максимальна и равна току ОКЗ. Его величина определяется известной формулой:

(1)

где Uл – линейное напряжение;

R1, R0, X1, Х0 – соответственно активные и реактивные сопротивления прямой и нулевой последовательности.

Сопротивление прямой последовательности

Сопротивления прямой последовательности R1 и X1 трансформаторов с разными схемами соединения обмоток определяются одними и теми же формулами и отличаются незначительно:

 

Заглянув в каталоги, нетрудно убедиться, что входящие в эти формулы известные величины Ркз и Uк от схем соединения обмоток трансформатора практически не зависят, а следовательно, от них не зависят и сопротивления прямой последовательности.

В отличие от этих сопротивлений, сопротивления нулевой последовательности трансформаторов с разными схемами соединения обмоток отличаются принципиально.

Сопротивления нулевой последовательности

Рассмотрим картину векторов токов и магнитных потоков в трансформаторе со схемой соединения обмоток D/Yн (рис. 2).

В таких трансформаторах токи прямой, обратной и нулевой последовательностей протекают как в первичной, так и во вторичной обмотках. При этом токи нулевой последовательности в первичной обмотке замыкаются внутри неё и в сеть не выходят. Создаваемые токами нулевой последовательности первичных и вторичных обмоток намагничивающие силы (ампер-витки) направлены встречно и почти полностью компенсируют друг друга, что обуславливает небольшую величину реактивных сопротивлений трансформатора. При этом сопротивления прямой и нулевой последовательностей приблизительно равны: R1 = R0; Х1 = Х0.

В трансформаторах со схемой соединения обмоток Y/Zн в аналогичном режиме ОКЗ токи нулевой последовательности протекают лишь по вторичной обмотке трансформатора, однако магнитного потока нулевой последовательности они не создают, что объясняется особенностью схемы Zн – «зигзаг».

Эта особенность состоит в том, что на каждом стержне трансформатора расположено по одной вторичной полуобмотке двух разных фаз (рис. 3). В режиме ОКЗ намагничивающие силы, создаваемые токами нулевой последовательности в этих полуобмотках, направлены встречно и друг друга взаимно компенсируют. При этом токи нулевой последовательности в первичной обмотке отсутствуют. В таких трансформаторах сопротивления нулевой последовательности оказываются меньше сопротивлений прямой последовательности: R0 < R1; Х0 < Х1.

 

Рис. 1. Токи симметричных составляющих в обмотках трансформатора в режиме однофазного короткого замыкания

IA21, IA22, IA20, IB21, IB22, IB20, IC21, IC22, IC20 – токи фаз А, В, С прямой, обратной и нулевой последовательностей вторичной обмотки;

IA11, IA12, IA10, IB11, IB12, IB10, IC11, IC12, IC10 – токи фаз А, В, С прямой, обратной и нулевой последовательностей первичной обмотки.

 

Рис. 2. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток D/Yн

 

Рис. 3. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток Y/Zн

Как следует из формулы (1), это обеспечивает большую величину тока ОКЗ у трансформаторов со схемами Y/Zн по сравнению с трансформаторами со схемами D/Yн.

Теперь обратимся к трансформаторам со схемой соединения обмоток Y/Yн. Как известно, в обмотках, соединённых в звезду без выведенной нулевой точки, токи нулевой последовательности протекать не могут. Поэтому в режиме ОКЗ токи этой последовательности протекают только во вторичной обмотке трансформатора.

Совпадающие по фазе магнитные потоки нулевой последовательности, создаваемые токами вторичной обмотки, выходят за пределы магнитного сердечника и замыкаются через металлический кожух трансформатора (рис. 4). Это определяет значительно большую величину сопротивлений нулевой последовательности таких трансформаторов: R0 >> R1; X0 >> X1.

 

Рис. 4. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток Y/Yн

Следует отметить, что в отличие от сопротивлений прямой последовательности трансформаторов, которые можно рассчитать, сопротивления нулевой последовательности трансформаторов со схемами соединения обмоток Y/Yн расчёту не поддаются. Их можно определить только экспериментально. Величина этих сопротивлений во многом зависит от конструкции кожуха трансформатора, от величины зазоров между сердечником и кожухом и т. п.

Схема замера сопротивлений нулевой последовательности приведена в ГОСТ 3484.1-88 [3]. К сожалению, в этом документе указано, что такие замеры предприятия-производители проводят по просьбе заказчиков. Вероятно, в последние годы таких просьб от заказчиков не поступает, а изготовители эти замеры самостоятельно не производят, считая, что в них нет необходимости. В результате проектировщики при выполнении расчётов пользуются старыми справочными данными. Однако использовать устаревшую информацию надо чрезвычайно осторожно, ведь конструкции современных трансформаторов, в частности кожухов, а также материалы, из которых они изготовлены, существенно изменились.

Кроме того, имеющиеся на сегодня данные по сопротивлениям нулевой последовательности трансформаторов крайне скудны и противоречивы. Так, согласно замерам Минского трансформаторного завода, выполненным много лет назад, реактивные сопротивления нулевой последовательности трансформаторов со схемами соединения обмоток Y/Yн превышают сопротивления прямой последовательности в среднем в 10 раз. В то же время в ГОСТ 3484.1-88 имеется фраза о том, что эти сопротивления могут отличаться на два порядка. И этим сегодня противоречия не исчерпываются [4].

Почему необходимо знать знать реальные значения сопротивлений

Реальные значения сопротивлений нулевой последовательности знать необходимо, поскольку они определяют величину тока ОКЗ. Чем больше эти сопротивления, тем меньше ток ОКЗ, соответственно труднее осуществить защиту трансформатора.

В нормальных режимах работы большие сопротивления нулевой последовательности при неравномерной загрузке фаз трансформатора на стороне 0,4 кВ приводят к ухудшению качества электроэнергии у потребителя.

Так, если принять R1 = R0, X1 = X0, что характерно для трансформаторов со схемами соединения обмоток D/Yн, то получим:

(2)

Таким образом, при этих условиях ток ОКЗ на выводах 0,4 кВ трансформатора будет равен току трёхфазного КЗ.

Однако, если R0>>R1 и X0>>X1, что характерно для трансформаторов со схемами соединения обмоток Y/Yн, то величина тока ОКЗ оказывается значительно меньше тока трёхфазного КЗ, то есть Iокз << I3фкз. Какие при этом могут возникнуть трудности с защитой, особенно если она выполнена со стороны обмотки ВН предохранителями 6(10) кВ, можно показать на конкретном примере.

На рис. 5 изображена схема подключения трансформатора 100 кВА, 6/0,4 кВ питания собственных нужд (ТСН) ПС 110/35/6 кВ. На ПС с переменным оперативным током такие трансформаторы устанавливаются на ОРУ и подключаются к воздушному вводу, идущему от силового трансформатора к вводной ячейке ЗРУ-6(10) кВ. Защита трансформатора, включая кабель 0,4 кВ до щита 0,4 кВ, выполняется предохранителями 6 кВ. Токи КЗ в конце защищаемой предохранителями зоны – при вводе на щит 0,4 кВ приведены в табл. 1. Как из неё видно, минимальное значение тока КЗ через предохранители 6 кВ имеет место при однофазном замыкании на стороне 0,4 кВ.

Таблица 1. Токи короткого замыкания в конце защищаемой предохранителями зоны за трансформатором 100 кВА, 6/0,4 кВ, D/Yн при вводе на щит 0,4 кВ

 

 

Рис. 5. Схема подключения трансформатора 100 кВА, 6/0,4 кВ для питания собственных нужд ПС 110/35/6 кВ

Согласно существующим рекомендациям по условиям отстройки от броска тока намагничивания трансформатора мощностью 100 кВА номинальный ток предохранителей принимается равным Iн.пр = (2 ÷ 3) Iн.тр. В данном случае Iн.пр  2 ·10 А  20. Принимаем Iн.пр = 20 А.

Минимальный отключаемый ток предохранителем типа ПКТ-6 кВ, 20 А согласно каталожным данным составляет Iмин.откл.пр = 240 А, что значительно больше токов КЗ, приведенных в табл. 1.

Таким образом, защита предохранителями типа ПКТ 6 кВ оказывается нечувствительной. Более того, при протекании тока КЗ ниже минимально отключаемого, предохранитель не только не защищает оборудование, но и разрушается сам, вызывая аварию.

В качестве защитного аппарата можно рассмотреть возможность использования предохранителей зарубежных фирм, например марки Merlin Gerin. Номинальный ток предохранителя специалисты компании рекомендуют выбирать из условия Iпр.0,1с  12 Iном.тр. Пользуясь времятоковой зависимостью, приведенной в [5], определяем, что этому условию удовлетворяет предохранитель Fusarc c номинальным током 20 А, минимальный ток отключения которого равен 55 А. Казалось бы, этот предохранитель надёжно защищает электрооборудование, т. к. минимально отключаемый им ток меньше минимального тока КЗ: 62 А 55 А. Однако время отключения данным предохранителем тока КЗ, равного 62 А, составляет 7 с. При таком длительном времени необходимо учитывать эффект спада тока, вызванный увеличением активного сопротивления кабеля вследствие его нагрева [6]. В результате спада тока его значение приближается к минимальному току отключения предохранителя –55 А, что делает защиту ненадёжной.

Улучшить надёжность защиты можно путём применения силового трансформатора 6/0,4 кВ со схемой соединения обмоток Y/Zн. В этом случае минимальный ток короткого замыкания через предохранители увеличивается до 80 А, а время его отключения предохранителем сокращается до 0,6 с и защита становится достаточно надёжной.

Если же в рассмотренном примере будет применён трансформатор со схемой соединения обмоток Y/Yн, то минимальный ток КЗ через предохранители составит лишь 22 А. Очевидно, что защитить электрооборудование предохранителями 6 кВ при таком токе невозможно. Недостатки трансформаторов со схемой соединения обмоток Y/Yн проявляются и в нормальных режимах работы при неравномерной загрузке фаз. Потери напряжения в более загруженной фазе могут резко возрасти по сравнению с менее загруженными фазами, особенно при большой загрузке трансформатора и низком cos j нагрузки.

Однако означает ли всё вышесказанное, что трансформаторы со схемой соединения обмоток Y/Yн не должны изготавливаться вообще? Представляется, что это не так. Не всегда большая величина сопротивления нулевой последовательности трансформатора является недостатком. Например, при применении трансформаторов более 1000 кВА может возникнуть проблема устойчивости однофазной коммутационной аппаратуры 0,4 кВ к току ОКЗ. В этом случае большая величина сопротивления нулевой последовательности трансформатора со схемой Y/Yн поможет решить эту проблему.

Что же касается защиты таких трансформаторов, то она решается с помощью релейной защиты и выключателя 6(10) кВ, а с низкой стороны – с помощью вводного автомата.

Выводы

Для трансформаторов малой мощности (от 25 до 250 кВА), защищаемых предохранителями со стороны ВН, безусловное преимущество имеет схема соединения обмоток Y/Zн. Несколько меньший эффект даёт схема D/Yн. Схему Y/Yн для таких трансформаторов применять не следует.

Схема соединения обмоток трансформаторов Y/Yн может применяться в сравнительно редких случаях для более мощных трансформаторов при необходимости ограничения тока однофазного КЗ с целью повышения устойчивости коммутационной аппаратуры.

Предприятиям-изготовителям силовых трансформаторов следует в обязательном порядке производить замеры их сопротивлений нулевой последовательности.

Литература

1. ГОСТ 11677-85. Трансформаторы силовые. Общие технические условия.

2. Ульянов С. А. Короткие замыкания в электрических системах. – М.: Госэнергоиздат, 1952. – 280 с.

3. ГОСТ 3484.1-88 (СТ СЭВ 1070-78). Трансформаторы силовые. Методы электромагнитных испытаний.

4. Справочник по проектированию электроснабжения, линий электропередачи и сетей / Под ред. Большама Я. М., Круповича В. И., Самовера М. Л. и др. – М.: Энергия, 1975. – 696 с.

5. Каталог на предохранители Fusarc Merlin Gerin (стандарт DIN).

6. ГОСТ 28249-93. Короткие замыкания в электроустановках. Методы расчёта в электроустановках переменного тока напряжением до 1 кВ.


www.proektant.ru

Пример выбора трансформатора тока 10 кВ

Теория теорией, а практика совсем другое. В этой статье я поделюсь своим опытом выбора трансформатора тока 10 кВ. Думаю, многие из вас узнают для себя что-то новенькое, т.к. в каталогах данной информации я не встречал, и приходилось общаться с производителями трансформаторов тока.

По трансформаторам тока у меня имеется несколько статьей:

Эта статья далась мне очень тяжело. Я ее несколько раз переписывал, находил ошибки перед самой публикацией, даже были мысли не публиковать на блоге. Но, все-таки решил написать про особенности ТТ с разными коэффициентами трансформации, поскольку найти что-нибудь по этой теме очень трудно.

В одном из последних проектов мне нужно было запроектировать трансформаторную подстанцию на 160 кВА и подвести к ней питающую линию 10 кВ. В ячейке КРУ на РП 10 кВ нужно было выбрать трансформаторы тока.

Изначально я думал, что коммерческий учет будет все-таки на стороне 0,4 кВ, но в энергосбыте сказали, что граница разграничения ответственности будет по линии 10 кВ. В связи с этим, трансформаторы тока следует выбирать как для коммерческого учета.

Основная сложность заключается в том,  что при такой мощности силового трансформатора ток в линии очень маленький, всего около 10 А.

Если следовать требованиям  ПУЭ, то для учета нужно ставить ТТ с обмоткой 20/5:

1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.

Сперва у меня был заложен трехобмоточный ТОЛ с обмотками 400/5, т.к. на другие ячейки поставлялись ТТ с такими обмотками. Как оказалось, обмотки ТТ могут иметь разные коэффициенты трансформации. В каталогах об этом не пишут.

Я запросил информацию у нескольких производителей и торгашей по поводу возможных коэффициентов трансформации у ТТ. Большинство ответило, что соотношение обмоток защитная/измерительная  должно быть 2. Т.е. если защитная обмотка 400А, то измерительная – 200А.

Затем я узнал, кто будет поставлять ТТ в мое КРУ. Им оказался ООО «Невский трансформаторный завод «Волхов». Связался с заводом, предоставил свои исходные данные и мне предложили несколько вариантов:

Один из вариантов: ТОЛ-НТЗ-11-11А-0,5SFs10/0,5Fs10/10Р10-10/10/15-75/5-300/5-300/5 31,5кА УХЛ2.

Пример условного обозначения опорного трансформатора тока

Соотношение обмоток – 300/75=4.

Данный трансформатор не совсем удовлетворяет моим требованиям. Тем не менее, мне его согласовали.

Иногда надо уметь признавать свои ошибки. В программу по расчету ТТ высокого напряжения я ввел неправильные исходные данные: вместо кратности токов термической и электродинамеческой стойкости я записал токи. В итоге мой расчет завысил характеристики ТТ.

Сейчас в программу расчета ТТ высокого напряжения внесены изменения.

Здесь еще следует понимать, что у всех обмоток трансформатора тока будет одинаковая термическая и электродинамическая стойкость и чем меньше номинальный ток обмотки, тем меньше данные показатели.

Из руководства по эксплуатации трансформатора тока ТОЛ НТЗ:

Номинальный первичный ток, АОдносекундный ток термической стойкости, кАТок электродинамической стойкости, кА
50,5...11,25...2,5
101...22,5...5
151,6...3,24...8
202...85...20
303...127,5...30
404...1610...40
505...2012,5...50
75,808...31,518,8...78,8
10010...4025...100
15016...4037,5...100
20020...4050...100
30031,5...4078,8...100
400-150040100

Выбранный ТТ я проверял на термическую и электродинамическую стойкость при помощи своей программы, однако, достаточно было бы взять ТТ и с более низкими значениями термической и электродинамической стойкости:

Расчет ТТ 75/5

Теоретически с такими характеристиками может быть выполнена обмотка 20/5. Буду очень признателен, если вдруг увидите ошибки в данном расчете.

Кстати, в ПУЭ имеется еще очень интересная особенность: измерительную обмотку ТТ по режиму КЗ можно не проверять?

1.4.3. По режиму КЗ при напряжении выше 1 кВ не проверяются:

5 Трансформаторы тока в цепях до 20 кВ, питающих трансформаторы или реактированные линии, в случаях, когда выбор трансформаторов тока по условиям КЗ требует такого завышения коэффициентов трансформации, при котором не может быть обеспечен необходимый класс точности присоединенных измерительных приборов (например, расчетных счетчиков), при этом на стороне вьющего напряжения в цепях силовых трансформаторов рекомендуется избегать применения трансформаторов тока, не стойких к току КЗ, а приборы учета рекомендуется присоединять к трансформаторам тока на стороне низшего напряжения.

Что будет с измерительной обмоткой, если в цепи возникнет ток КЗ, а она не проходит проверку по режиму КЗ? По всей видимости трансформатор тока не успеет «сгореть». Наверное это актуально только для  однообмоточных трансформаторов, т.к. у многообмоточных трансформаторов характеристики всех обмоток одинаковые.

В моей старой программе по проверке ТТ высокого напряжения был заложен трехсекундный ток термической стойкости, но в каталогах в основном пишут односекундный ток термической стойкости.

Чтобы перевести односекундный ток в трехсекундный нужно воспользоваться формулой:

I3с=I1с/1,732

Если вам нужен трансформатор тока с разными коэффициентами трансформации, то советую всегда консультироваться с производителями ТТ, т.к. только они знают, какие возможны варианты изготовления.

Кстати, при помощи этой программы очень быстро можно проверить различные варианты трансформаторов тока.

В ближайшее время будет рассылка обновленной версии программы и запишу видео с подробным описанием всех переменных. Жду ваших комментариев, возможно найдете ошибки.

А что вы знаете про ТТ с разными кф трансформации, какое их назначение?

Советую почитать:

220blog.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *