Твердость материалов – —

alexxlab | 18.06.2020 | 0 | Вопросы и ответы

Твердость материалов — Материалы и свойства

Твердость – свойство материала сопротивляться проникновению в него другого, более твердого тела, например инструмента. От твердости зависит область применения материалов, поведение их в процессе эксплуатации и сохранение внешнего вида. По этой характеристике оценивают качество металлов, пластических масс, керамики, древесины, каменных и других материалов.

Она существенно влияет на характер и трудоемкость обработки материала.

Существует несколько способов определения твердости материалов: царапание, вдавливание, прокол стандартной иглой, испытания с помощью бойка и колебаний маятника. Все они основаны на внедрении в испытываемый образец минерала, шарика, пирамиды, пуансона под определенным давлением: чем меньше усилие и больше глубина внедрения, тем ниже твердость материала, и наоборот.

Наиболее простым и распространенным на практике способом  определения твердости природных каменных материалов является царапание их другими минералами шкалы твердости. Предложенная в прошлом столетии немецким ученым Ф. Моосом указанная шкала содержит 10 минералов от самого мягкого (талька) до самого твердого (алмаза), причем порядковый номер минерала в шкале соответствует его твердости и каждый следующий по порядку минерал оставляет черту (царапину) на предыдущем, а сам им не прочерчивается (см. табл. 3).

Твердость других материалов определяют различными способами, обычно на специальных приборах. Твердость металлов, бетона, древесины и пластмасс (кроме пористых) оценивают, вдавливая в образцы стальной шарик или алмазный конус. О величине твердости судят либо по глубине вдавливания шарика или конуса, либо по диаметру полученного отпечатка.

Числовыми характеристиками твердости материалов служат числа твердости, которые сведены в различные шкалы, соответствующие разным методам ее измерения. Числа твердости указываются в единицах HB (метод Бринелля), HV (метод Виккерса), HR (метод Роквелла), где H – первая буква английского слова харднесс – твердость.

При определении твердости методом Роквелла вводятся дополнительные обозначения: В (шарик), С и А (конус, при разных грузах). Поясним сказанное на примере определения твердости металлов: для незакаленных деталей применяют стальной закаленный шарик и груз массой 100 кг, твердость отсчитывают по красной шкале В и обозначают HRB для закаленных деталей высокой твердости используют алмазный конус и груз массой 150 кг, твердость отсчитывают по черной шкале С и обозначают HRC; для особо твердых или тонких, деталей применяют также алмазный конус, но груз 60 кг, твердость отсчитывают по шкале А специального прибора и обозначают HRA.

Следует отметить, что твердость материала не всегда соответствует его прочности. Например, древесина, значительно уступая бетону по твердости, имеет одинаковую с ним прочность.

arxipedia.ru

Лабораторная работа: определение твердости материалов

Цель работы: ознакомиться с методиками определения твёрдости материалов. Измерить микротвёрдость образцов, предложенных преподавателем.

Твёрдость как характеристика свойств материала

Твердость – это сопротивление материала проникновению в его поверхность стандартного тела (индентора), не деформирующегося при испытании.

Это неразрушающий метод контроля, основной способ оценки качества термической обработки изделия. О твердости судят либо по глубине проникновения индентора (метод Роквелла), либо по величине отпечатка от вдавливания (методы Бринелля).

Во всех случаях происходит пластическая деформация материала. Чем больше сопротивление материала пластической деформации, тем выше твердость. Схемы испытаний представлены на рис. 1.

Рис. 1. Схемы определения твердости: а – по Бринеллю; б – по Роквеллу; в – по Виккерсу

В результате вдавливания с достаточно большой нагрузкой поверхностные слои материала, находящиеся под наконечником и вбли­зи него, пластически 5

деформируются. После снятия нагрузки остается отпечаток. Особенность происходящей при этом деформа­ции заключается в том, что она протекает только в небольшом объеме, окруженном недеформированным материалом. В таких условиях возникают главным образом касательные напряжения, а доля растягивающих напряжений незначительна по сравнению с получаемыми при других видах механических испытаний (на растяжение, изгиб, кручение, сжатие). Поэтому при измерении твердости вдавливанием пластиче­скую деформацию испытывают не только пластичные, но также металлы (например, чугун), которые при обычных механических испытаниях (на растяжение, сжатие, кручение, изгиб) разрушаются практически без пластической деформа­ции.

Таким образом, твердость характеризует сопротивление пласти­ческой деформации и представляет собой механическое свойство ма­териала, отличающееся от других его механических свойств, способом измерения.

Преимущества измерения твердости следующие:

1. Между твердостью пластичных металлов, определяемой спо­собом вдавливания, и другими механическими свойствами (главным образом пределом прочности), существует количественная зависимость. Так, сосредоточенная пла­стическая деформация металлов (при образовании шейки) аналогична деформации, создавае­мой в поверхностных слоях металла при измерении твердости вдавли­ванием наконечника.

Подобная количественная зависимость не наблюдается для хруп­ких материалов, которые при испытаниях на растяжение (или сжа­тие, изгиб, кручение) разрушаются без заметной пластической дефор­мации, а при измерении твердости получают пластическую деформа­цию. Однако в ряде случаев и для этих металлов (например, серых чугунов) наблюдается качественная зависимость между пределом прочности и твердостью; возрастанию твердости обычно соответствует увеличение предела прочности на сжатие.

По значениям твердости можно определять также и некоторые пластические свойства металлов. Твердость, определенная вдавливанием, характеризует также предел выносливости некоторых металлов, в частности меди, дуралюмина и сталей в отожженном состоянии.

2. Измерение твердости по технике выполнения значительно проще, чем определение прочности, пластичности и вязкости. Испытания твердости не требуют изготовления специальных образцов и выполняются непосредственно на проверяемых деталях после за­чистки на поверхности ровной горизонтальной площадки, а иногда даже и без такой подготовки.

Измерения твердости выполняются быстро.

3. Измерение твердости обычно не влечет за собой разрушения проверяемой детали, и после измерения её можно использовать по своему назначению, в то время как для определения прочности, пластичности и вязкости необходимо изготовление специальных об­разцов.

4. Твердость можно измерять на деталях небольшой толщины, а также в очень тонких слоях, не превышающих (для некоторых спо­собов измерения твердости) десятых долей миллиметра, или в микро­объемах металла; в последнем случае измерения проводят способом микротвердости. Поэтому многие способы измерения твердости пригодны для оценки различных по структуре и свойствам слоев металла, например поверхностного слоя цементованной, азотирован­ной или закаленной стали, имеющей разную твердость по сечению детали. Методом определения микротвердости можно также измерять твердость отдельных составляющих в сплавах.

Следует различать два способа определения твердости вдавлива­нием: измерение макротвёрдости и измерение микротвер­дости.

Измерение макротвердости отличается тем, что в испытуемый материал вдавливается тело, прони­кающее на сравнительно большую глубину, ависящую от величины прилагаемой нагрузки и свойств металла. Кроме того, во многих

испытаниях вдавливается тело значительных размеров, например стальной шарик диаметром 10 мм, в результате чего в де­формируемом объёме оказываются представленными все фазы и струк­турные составляющие сплава. Измеренная твердость в этом случае характеризует твердость всего испытуемого материала.

Выбор формы, размеров наконечника и величины нагрузки зави­сит от целей испытания, структуры, ожидаемых свойств, состояния поверхности и размеров испытуемого образца. Если металл имеет гетерогенную структуру с крупными выделе­ниями отдельных структурных составляющих, различных по свой­ствам (например, серый чугун, цветные подшипниковые сплавы), то для испытания твердости следует выбирать шарик большого диа­метра. Если же металл имеет сравнительно мелкую и однородную структуру, то малые по объёму участки испытуемого металла могут быть достаточно характерными для оценки его твёрдости. В этих случаях испытания можно про­водить вдавливанием тела меньшего размера, например алмазного конуса или пирамиды, и на меньшую глубину, и, следовательно, при небольшой нагрузке.

При испытании металлов с высокой твердостью, например зака­ленной или низкоотпущенной стали, приведенное условие является даже обязательным, поскольку вдавливание стального шарика или алмаза с большой нагрузкой может вызвать деформацию шарика или скалывание алмаза.

Однако значительное снижение нагрузки нежелательно, так как это приведет к резкому уменьшению деформируемого объёма и может дать значения, не характерные для основной массы металла. Поэтому величины нагрузок и размеры получаемых в материалах отпечатков не должны быть меньше некоторых определенных пределов.

Измерение микротвёрдости имеет целью определить твёрдость отдельных зерен, фаз и структурных составляющих сплава (а не «усредненную» твёрдость, как при измерении макротвёрдости). В данном случае объём, деформируемый вдавливанием, должен быть меньше объёма (площади) измеряемого зерна.

Поэтому прилагаемая нагрузка выбирается небольшой. Кроме того, микротвёрдость изме­ряют для характеристики свойств очень малых по размерам деталей.

Значительное влияние на результаты испытаний твёрдости оказы­вает состояние поверхности измеряемого материала. Если поверх­ность неровная — криволинейная или с выступами, то отдельные уча­стки в различной степени участвуют в сопротивлении вдавливанию и деформации, что приводит к ошибкам в измерении. Чем меньше нагрузка для вдавливания, тем более тщательно должна быть подго­товлена поверхность. Она должна представлять шлифованную гори­зонтальную площадку, а для измерения микротвердости — полиро­ванную.

Для приблизительной твердости удобно пользоваться шкалой Мооса – набором из 10 минералов, расположенных по возрастанию твердости:

Тальк –1 Полевой шпат -6

Гипс –2 Кварц –7

Кальцит –3 Топаз –8

Флюорит – 4 Корунд –9

Апатит -5 Алмаз -10

studfiles.net

Министерство образования Российской Федерации

Таганрогский Государственный Радиотехнический Университет

Кафедра Механики

Реферат

Выполнил:

Студент гр. Р-99

Андриевский В. А.

Проверил:

доцент кафедры механики

Шаповалов Р. Г.

Таганрог 2001

Методы определения твердости металлов

Одной из наиболее распространенных характеристик, определяющих качество металлов и сплавов, возможность их применения в различных конструкциях и при различных условиях работы, является твердость. Испытания на твердость производятся чаще, чем определение других механических характеристик металлов: прочности, относительного удлинения и др.

Твёрдостью материала называют способность оказывать сопротивление механическому проникновению в его поверхностный слой другого твёрдого тела. Для определения твёрдости в поверхность материала с определённой силой вдавливается тело (индентор), выполненное в виде стального шарика, алмазного конуса, пирамиды или иглы. По размерам получаемого на поверхности отпечатка судят о твёрдости материала. В зависимости от способа измерения твёрдости материала, количественно её характеризуют числом твёрдости по Бринелю (НВ), Роквеллу (HRC) или Виккерсу (HV).

Указанные механические характеристики связаны между собой, поэтому их конкретные значения могут быть найдены расчётным путём на основе данных о твёрдости с помощью формул, полученных для конкретного материала с определённой термообработкой. Так, например, предел выносливости на изгиб сталей с твёрдостью 180-350 НВ равен примерно 1,8 НВ, с твёрдостью 45-55 HRC – 18 HRC+150, связь предела выносливости с пределом прочностистали описывается соотношениями:

Конкретным образцам конструкционных материалов, а также выполненным из них изделиям, присуща индивидуальность прочностных и упругих характеристик. Разброс их значений для различных образцов, выполненных из одного и того же материала, обусловлен статистической природой прочности твёрдых тел, различием структур внешне одинаковых образцов. Из-за неопределённости реальных механических характеристик материала, неопределённости некоторых внешних нагрузок, действующих на технический объект, погрешности расчётов для обеспечения безопасной работы проектируемых конструкций должны быть приняты соответствующие проектному этапу обеспечения надёжности меры предосторожности. В качестве такой меры используется понижение в n раз относительно опасного напряжения материала (предела прочности, предела текучести, предела выносливости или предела пропорциональности) величины максимально допускаемых напряжений, используемых в условии прочности. Величина n получила название нормативного коэффициента запаса прочности, который выбирается по таблице или рассчитывается как произведение

n = n1 * n2 * n3,

где n1-учитывает среднюю точность определения напряжений, n2-учитывает неопределённость механических характеристик материала, n3-учитывает среднюю

степень ответственности проектируемой детали.

Существует несколько способов измерения твердости, различающихся по характеру воздействия наконечника. Твердость можно измерять вдавливанием индентора (способ вдавливания), ударом или же по отскоку наконечника – шарика. Твердость, определенная царапаньем, характеризует сопротивление разрушению, по отскоку – упругие свойства, вдавливанием сопротивление пластической деформации. В зависимости от скорости приложения нагрузки на индентор твердость различают статическую (нагрузка прикладывается плавно) и динамическую (нагрузка прикладывается ударом).

Широкое распространение испытаний на твердость объясняется рядом их преимуществ перед другими видами испытаний:

  • простота измерений, которые не требуют специального образца и могут быть выполнены непосредственно на проверяемых деталях;

  • высокая производительность;

  • измерение твердости обычно не влечет за собой разрушения детали, и после измерения ее можно использовать по своему назначению;

  • возможность ориентировочно оценить по твердости другие характеристики металла, в первую очередь предел прочности.

Так, например, зная твердость по Бринеллю (HB), можно определить предел прочности на растяжение (временное сопротивление).

,

где k – коэффициент, зависящий от материала;

k = 0,34 – сталь HB 120 … 175;

k = 0,35 – сталь HB 175 … 450;

k = 0,55 – медь, латунь и бронза отоженные;

k = 0,33 … 0,36 – алюминий и его сплавы.

Наибольшее применение получило измерение твердости вдавливанием в испытываемый металл индентора в виде шарика, конуса и пирамиды (соответственно методы Бринелля, Роквелла и Виккерса). В результате вдавливания достаточно большой нагрузкой поверхностные слои металла, находящиеся под наконечником и вблизи него, пластически деформируются. После снятия нагрузки остается отпечаток. Величина внедрения наконечника в поверхность металла будет тем меньше, чем тверже испытываемый материал.

Таким образом под твердостью понимают сопротивление материала местной пластической деформации, возникающей при внедрении в него более твердого тела – индентора.

studfiles.net

Твёрдость материалов — Учись Как На Парах!

1. Цель работы

1.1 Изучить методы определения твердости материалов, устройство и работу твердомеров.

1.2 Приобрести навыки самостоятельного проведения испытаний на твердость вдавливанием.

2 Основные положения

Под твердостью понимается способность материала сопротивляться проникновению в него другого более твердого тела (индентора), не получающего остаточной деформации.

2.1 Измерение твердости вдавливанием стального шарика по методу Бринелля

Пользуясь специальным прессом, в испытуемый материал вдавливается стальной закаленный шарик(рис.2.1) диаметром 10,5 и 2,5 мм под действием заданной нагрузки F в течении определенного времени (рис. 2.1).

Число твердости по Бринеллю НВ определяется отношением приложенной нагрузки F, действующей на шарик диаметром D, к площади сферической поверхности полученного отпечатка:

HB = F/A, кгс/мм2 (2.1)

Где F – нагрузка на шарик, кгс; А – площадь сферической поверхности отпечатка, мм2, где площадь А в мм сферической поверхности отпечатка можно определить по формуле:

A=pD(D-(D2-d2)1/2)/2 (2.2)

Тогда формула (2.1) примет вид:

HB=2F/pD(D-(D2-d2)1/2) (2.3)

По этой формуле определяют твердость по Бринеллю, измерив диаметр отпечатка, полученный при определенной нагрузке и зная диаметр шарика.

Твердость по Бринеллю определяется как для мягких пластичных материалов, так и для хрупких материалов. При вдавливании шарика в поверхность хрупкого материала последний также получает пластическую деформацию. Объясняется это тем, что деформация протекает только в небольшом объеме, окруженном недеформированным материалом. Деформируемый материал находится в напряженном состоянии, близком к объемному, при котором возможность нарушения сцепления его частиц устранена и, следовательно, хрупкое разрушение невозможно.

К достоинствам метода Бринелля относятся: достаточная быстрота испытаний, простота и надежность конструкций испытательного прибора, отсутствие необходимости тщательной подготовки поверхности для измерений.

К недостаткам следует отнести невозможность испытания материалов с твердостью более 450 НВ, что объясняется деформацией наконечника – стального шарика.

Основной недостаток метода Бринелля – отсутствие точного геометрического подобия отпечатков. Это делает нестрогим количественное сопоставление чисел твердости разных материалов, полученных при разных значениях d/D.

Рис.2.1

1.4. Измерение твердости вдавливанием алмазного конуса или стального шарика по методу Роквелла.

Сущность этого метода состоит в том, что твердость определяют по глубине вдавливания в испытуемое изделие алмазного конуса с углом у вершины 1200 или стального шарика диаметром 1,588 мм под действием двух последовательно прилагаемых нагрузок: предварительной F0, равной 10 кгс, и общей F, равной 60, 100 и 150 кгс (рис. 1.2).

Разность глубин внедрения под нагрузками F0 и F характеризует твердость. На практике число твердости по Роквеллу отсчитывают по шкале индикаторного прибора.

Достоинствами метода Роквелла по сравнению с методом Бринелля являются высокая производительность и сохранение качественной поверхности изделия после испытания (малые размеры отпечатка), что позволяет контролировать твердость готовых деталей.

Применение алмазного конуса позволяет измерять твердость закаленной стали и других очень твердых сплавов.

Недостатком метода является также необходимость тщательной подготовки поверхности – шлифование. На прибор Роквелла, где глубина отпечатка мала и ее измеряют с точностью до 0,002 мм, могут оказывать влияние загрязненность, вибрация и другие условия производства.

Основным недостатком метода Роквелла является то, что твердость по Роквеллу – еще более условная характеристика, чем НВ.

Метод Роквелла не рекомендуется применять для неоднородных по структуре сплавов (например, серых чугунов). Этим методом нельзя устанавливать твердость хрупких изделий.

Рис.1.2

Лий, имеющих на поверхности раковины и посторонние включения, а также тонких изделий, например, меньше 0,7 мм по шкалам B и C или 0,4 мм по шкале А.

Таблица 1.1 “Экспериментальные и расчетные данные твердости по Бринеллю”

№ испытания

Материалы образца

Толщина образца

Вид индентора

Нагрузка F, кгс

Длительность испытания, с

Диаметр отпечатка a, мм

Твердость, НВ

Перевод в твердость по Роквеллу по таблице

Вдоль

Поперек

Среднее арифметическое

По формуле (1.2)

По таблице

1

Алюминий

10

Шарик

1000

60

4,5

4,4

4,45

60,94

60,9

2

Сталь

10

Шарик

3000

10

3,1

3,1

3,1

387,68

388

3

Медь

10

Шарик

3000

30

——

Таблица 1.2 “Экспериментальные и расчетные данные твердости по Роквеллу”

Номер испытания

Материал образца

Вид индентора

Нагрузка, Н

Длительность испытаний, с

Шкала

Твердость по Роквеллу

Перевод в твердость по Бринеллю по таблице

1

Закаленная сталь

Шарик

1471

6

±3%

68

1.5 Вывод

В результате лабораторной работы ознакомились с определением твердости материалов по Роквеллу и Бринеллю и научились определять твердость опытным путем, а также ознакомились с устройством твердомеров. Число твердости по Бринеллю определяется отношением приложенной нагрузки, действующей на шарик, к площади сферической поверхности полученного отпечатка, а по Роквеллу — по глубине вдавливания в испытуемое изделие алмазного конуса или стального шарика под действием двух последовательно прилагаемых нагрузок: предварительной и общей.

Записи по теме

naparah.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *