Выпрямитель высоковольтный – Высоковольтный выпрямитель – Большая Энциклопедия Нефти и Газа, статья, страница 1

alexxlab | 26.11.2019 | 0 | Вопросы и ответы

Высоковольтный выпрямитель – Большая Энциклопедия Нефти и Газа, статья, страница 1

Высоковольтный выпрямитель

Cтраница 1

Высоковольтные выпрямители, применяемые для питания рентгеновских труоок и электронных микроскопов, изготовляются на напряжения до 200 кв и более с выходной мощностью до нескольких десятков киловатт.  [1]

Высоковольтный выпрямитель, питающий счетную трубку, собран на селеновых шайбах и рассчитан на потенциал до 2 5 кв, величина которого контролируется по киловольтметру. Следует помнить, что высокое напряжение небезопасно, и по окончании работы для более быстрого разряда конденсаторов фильтра необходимо нажать специальную замыкающую кнопку.  [3]

Высоковольтный выпрямитель имеет внутреннее сопротивление порядка 8 – 12 Мом в зависимости от добротности паразитного эквивалентного контура и мощности генератора.  [4]

Высоковольтный выпрямитель питается импульсным высоковольтным напряжением, образуемым на дополнительной и основной обмотках выходного строчного трансформатора 5Тр1 во время обратного хода строчной развертки.  [5]

Высоковольтный выпрямитель, питающий счетную трубку, собран на селеновых шайбах и рассчитан на потенциал до 2 5 кв, величина которого контролируется по киловольтметру. Следует помнить, что высокое напряжение небезопасно, и по окончании работы для более быстрого разряда конденсаторов фильтра необходимо нажать специальную замыкающую кнопку.  [7]

Высоковольтный выпрямитель обеспечивает плавную регулировку напряжения в пределах 200 – 2500 в при питании от сети переменного тока ПО, 127 и 220 в с частотой 50 гц.  [8]

Высоковольтные выпрямители

являются основной частью оборудования при передаче электроэнергии на большие расстояния постоянным током высокого напряжения; они же используются как инверторы для преобразования постоянного тока в переменный.  [9]

Высоковольтный выпрямитель работает нормально только при исправном генераторе строчной развертки. Проверка высокого напряжения при отсутствии кило-вольтметра может быть произведена при помощи самодельного высоковольтного щупа к вольтметру ( стр.  [10]

Высоковольтный выпрямитель работает по однополупериодной схеме на лампе 2Ц2С и дает на выходе напряжение около 1 кв под нагрузкой.  [12]

Высоковольтные выпрямители используются для питания электронно-лучевых трубок в телевизионных приемниках, в индикаторах радиолокационных станций; для питания модуляторов и выходных каскадов мощных передатчиков; для заряда импульсных формирующих линий, для питания цепей поджига разрядников в переключателях радиолокационных станций и в другой радиоаппаратуре.  [13]

Высоковольтный выпрямитель преобразует импульсы, которые возникают в повышающей обмотке строчного трансформатора при обратном ходе луча, в постоянное напряжение 8 – 16 кв, необходимое для питания анода кинескопа.  [15]

Страницы:      1    2    3    4    5

www.ngpedia.ru

Выпрямители. Схемы выпрямления электрического тока

В данной статье расскажем что такое выпрямитель тока, принципы его работы и схемы выпрямления электрического тока.

Выпрямитель электрического тока – электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (одно полярный) электрический ток.

В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.

Для начала вспомним, что собой представляет переменный электрический ток. Это гармонический сигнал, меняющий свою амплитуду и полярность по синусоидальному закону.

В переменном электрическом токе можно условно выделить положительные и отрицательные полупериоды. Всё то, что больше нулевого значения относится к положительным полупериодам (положительная полуволна – красным цветом), а всё, что меньше (ниже) нулевого значения – к отрицательным полупериодам (отрицательная полуволна – синим цветом).

Выпрямитель, в зависимости от его конструкции «отсекает», или «переворачивает» одну из полуволн переменного тока, делая направление тока односторонним.

Схемы построения выпрямителей сетевого напряжения можно поделить на однофазные и трёхфазные, однополупериодные и двухполупериодные.

Для удобства мы будем считать, что выпрямляемый переменный электрический ток поступает с вторичной обмотки трансформатора. Это соответствует истине и потому, что даже электрический ток в домашние розетки квартир домов приходит с трансформатора понижающей подстанции. Кроме того, поскольку сила тока – величина, напрямую зависящая от нагрузки, то при рассмотрении схем выпрямления мы будем оперировать не понятием силы тока, а понятием – напряжение, амплитуда которого напрямую не зависит от нагрузки.

На рисунке изображена схема и временная диаграмма выпрямления переменного тока однофазным однополупериодным выпрямителем.

Из рисунка видно, что диод отсекает отрицательную полуволну. Если мы перевернём диод, поменяв его выводы – анод и катод местами, то на выходе окажется, что отсечена не отрицательная, а положительная полуволна.

Среднее значение напряжения на выходе однополупериодного выпрямителя соответствует значению:

Uср = Umax / π = 0,318 Umax

где: π — константа равная 3,14.

Однополупериодные выпрямители используются в качестве выпрямителей сетевого напряжения в схемах, потребляющих слабый ток, а также в качестве выпрямителей импульсных источников питания. Они абсолютно не годятся в качестве выпрямителей сетевого напряжения синусоидальной формы для устройств, потребляющих большой ток.

Наиболее распространёнными являются однофазные двухполупериодные выпрямители. Существуют две схемы таких выпрямителей – мостовая схема и балансная.

Рассмотрим мостовую схему однофазного двухполупериодного выпрямителя и его работу.

meanders.ru

Выпрямитель высоковольтный – Справочник химика 21

    При электровзрывной обработке механическое воздействие на материалы и заготовки осушсствляется ударными волнами, возникающими при высоковольтных импульсных разрядах в жидкости. При приложении к двум электродам, находящимся в жидкости, например в технологической воде, высокого напряжения (десятки киловольт) между ними проскакивает искра, сопровождаемая сильным выделением пара и газа, образующим вокруг нее парогазовый пузырь. Если к межэлектродному промежутку приложить весьма кратковременный импульс тока, то выде.тение газа и пара сводится к минимуму, а в жидкости появляется ударная волна давления большой силы, распространяющейся во все стороны в плоскости, перпендикулярной оси разряда. В качестве генератора импульсов обычно используют схему, как на рис. 9.12 —с конденсатором-накопителем, заряжаемым от высоковольтного трансформатора через выпрямитель. Разряд происходит при достижении на конденсаторе рабочего напряжения сначала пробивается формировочный промежуток, а за НИМ рабочий промежуток. При этом разряд в жидкости получается очень кратковременным (импульсным) с крутым фронтом тока чем менее продолжителен разряд и чем круче передний фронт его тока, тем больше амплитуда распространяющейся в жидкости ударной волны. Регулируя длину формировочного промежутка, можно изменять амплитуду и длительность импульсного разряда. 
[c.379]

    Высоковольтный генератор предназначен для соединения постоянного (или пульсирующего) напряжения между анодом и катодом необходимой величины и тока питания нити накала рентгеновской трубки. В основе источника высокого анодного напряжения — повышающий трансформатор ВТР и выпрямитель [2, 21]. [c.291]

    Основными источниками высокого напряжения являются выпрямители с высоковольтными трансформаторами, каскадные генераторы и электростатические генераторы. Выпрямительные устройства используют при мощностях установок выше 10 кВт. Каскадные генераторы являются сравнительно маломощными. Особое место занимают электростатические генераторы, основанные на преобразовании [c.76]

    По сравнению с ВДП электронные установки намного дороже, так как для них требуются высоковольтные источники питания постоянного тока. Последние состоят из повышающих трансформаторов и высоковольтных выпрямителей, собираемых на тиратронах или селеновых элементах. В настоящее время для ЭЛУ разрабатываются высоковольтные выпрямители на кремниевых диодах. На крупных установках для стабилизации тока пучка применяются также параметрические источники тока. 

[c.252]

    Основными частями агрегата (рис. 34) являются высоковольтный однофазный трансформатор, механический выпрямитель, высоковольтный переключатель (монтируются в металлической кабине шкафного типа) панель управления с аппаратурой управления, контроля, защиты и сигнализации (устанавливается отдельно). [c.88]

    Машинные залы, как правило, представляют собой изолированные от цеха помещения, предназначенные для размещения в них основного электрооборудования прокатных двигателей, машин преобразовательных агрегатов, ртутных выпрямителей, высоковольтных распределительных устройств, трансформаторов, щитов станций управления и др. Этим обеспечивается защита электрических машин и аппаратов от вредного воздействия специфической среды металлургического производства и существенно облегчаются условия эксплуатации электрооборудования. Обычно машинные залы располагаются вдоль линии стана. Это позволяет максимально приблизить оборудование, расположенное внутри машинного зала, к электрооборудованию, расположенному в цехе, и уменьшить расход соединительных проводов. 

[c.262]

    Надежное высоковольтное питание постоянным током является необходимым условием для работы электрофильтров, поскольку на промышленных установках применяются отрицательные потенциалы до 90 кВ, а для очистки окружающего воздуха применяются положительные потенциалы до 13 кВ. Ток, подаваемый на промышленные электрофильтры, в соответствии с размером и режимом работы электрофильтра изменяется между 30 и 500 мПа, поэтому необходимы трансформаторы и- выпрямители мощностью до 40 кВ-А. Поскольку скорость миграции зависит от зарядки н напряженности осадительного поля, необходимо прикладывать наибольшее возможное напряжение, не вызывающее зажигание дуги. 

[c.500]

    Разница в отметках высоты между оборудованием электропитания и изоляторами на высоковольтном электроде должна сохраняться минимальной не только потому, что стоимость высоковольтного кабеля очень велика, но и потому, что состав изоляционной пропитки изменяется и может привести к пробою изоляции. Наилучшим расположением считается установка оборудования регулирования напряжения, трансформатора и выпрямителя сверху электрофильтра и соединение высоковольтных электродов с шинами. [c.503]

    Для регистрации активности счетчик Гейгера—Мюллера включают в схему, в которой импульс тока под действием напряжения, создаваемого высоковольтным выпрямителем, поступает на усилитель, не только усиливающий малый ток импульса, но и формирующий его для дальнейшей регистрации. С усилителя импульс тока подается на пересчет-ное устройство и затем на электромеханический счетчик импульсов. Назначение пересчетного устройства пропускать на механический счетчик лишь малую, определенную долю импульсов тока, так как электромеханический счетчик не может регистрировать большие скорости счета. 

[c.337]

    Подготовка установки к работе. Прежде чем приступить к измерению, по паспорту проверяют правильность включения всех блоков установки. Тумблеры, кроме тумблера на электромеханическом счетчике, ставят в положение выключено , а ручку регулятора напряжения на высоковольтном выпрямителе, поворачивают против часовой стрелки до упора. В установку ПС-5М включают блок УГС-1. [c.341]

    Снятие счетной характеристики счетчика Гейгера — Мюллера. После прогревания высоковольтного выпрямителя в течение 15 мин можно [c.341]

    Для его питания необходим высоковольтный стабильный источник постоянного тока. Таким источником могут служить сухие анодные батареи (БАС), соединенные последовательно, чтобы обеспечивать нужное напряжение (обычно 1200—1600 в). Часто применяют специальные стабилизированные выпрямители, например ВС-9, ВС-16 или ВС-22. 

[c.189]

    Оксид серы (IV) поглощают водой в абсорберах 15, 16, наполненных насадкой из стеклянных трубочек. Образующийся туман серной кислоты улавливают в электрофильтре 17. Электрофильтр представляет собой стеклянную трубку диаметром 50—60 мм и длиной 500 мм, к которой снизу припаян кран, а сверху вставлена пробка с пропущенной через ее центр 3—5 мм медной проволокой. Снаружи трубка обмотана алюминиевой фольгой, которая заземлена и служит положительным электродом. Медная проволока соединена с высоковольтным преобразователем типа Разряд-1 , питание которого осуществляется выпрямителем на 12 В типа ВС-24М. Медная проволока служит отрицательным электродом. Электрофильтр подключается к клеммам 25 кВт преобразователя. Установка может быть смонтирована и без электрофильтра, 1Ю при этом выход серной кислоты уменьшится на 10—15%. 

[c.27]

    Высоковольтные блоки питания. Целесообразно рассмотреть как типовые, так и перспективные структурные схемы высоковольтных источников вторичного электропитания. Типовая схема (рис. 4.3) содержит преобразователь Пр, трансформатор Тр, выпрямитель В, фильтр Ф и стабилизатор С. Преобразователь необходим, если используется автономный источник питания (батареи или аккумулятор) он должен содержать автогенератор Аг и усилитель мощности УМ. Для уменьшения [c.135]

    I – блок индикации и клавиатуры 2 – блок управления 3 – блок питания 4 – сигнализатор 5 – блок преобразователя с регулятором напряжения б – высоковольтный трансформатор с емкостным делителем 7, 9 – делители напряжения высоковольтный трансформатор с выпрямителем и реостатным делителем 10 – детектор искрового пробоя 1] – щуп  [c.506]

    Измерение активности препарата по -излучению с помощью торцового счетчика производят на специальных счетных установках, состоящих иэ счетчика, высоковольтного выпрямителя для питания счетчика, усилителя импульсов, пересчетной схемы, позволяющей увеличить допустимую скорость счета, и электромеханического счетчика импульсов (например, установка типа Б , типа Флокс и др.). [c.247]

    Счетная установка типа Б состоит из входного блока (обычно жестко прикрепленного к свинцовой защите), высоковольтного выпрямителя (на 25 ООО В) для питания газового счетчика, пересчетного прибора и электромеханического счетчика. [c.454]

    Широко распространен радиометр Б-2, состоящий из входного блока типа БГС-2 (с держателем счетчиков) и блока типа ВСП. Последний включает высоковольтный выпрямитель для питания газовых счетчиков, пересчетное устройство и электромеханические счетчики с объединенной лицевой панелью (рис. 86). [c.455]

    ДЛЯ отделения раствора щелочи, сокращается в 3—6 раз, для отделения воды — в 2,5—5 раз. Так как для создания одинакового градиента поля на электроды пилотных электроразделителей подается меньшее (пропорционально уменьшению расстояния) напряжение, уменьшение расстояния между электродами приводит к снижению требований к изоляторам, выпрямителю, высоковольтному кабелю. Очевидно, уменьшать расстояние между электродами целесообразно в электроразделителях, предназначенных для очистки светлых нефтепродуктов, при которой электроды сильно нр зягряяняются. Для удобства монтажа электродов с уменьшенным зазором их целесообразно изготавливать и поставлять готовыми секциями. [c.26]

    Перед пуском обслуживающий персонал должен убедиться в исправности электрооборудования (выпрямитель, высоковольтный кабель, изоляторы, электроды), контрольно-измерительных приборов (манометры, регуляторы раздела фаз) и регулятора верхнего уровня, блокирующего высокое напряжение в случае появления в аппарате газовой фазы. Особое внимание перед пуском следует уделить внутреннему осмотру электроразделителя, проверить правильность монтажа, убедиться в отсутствии в аппарате посторонних предметов. Необходима тщательная проверка проходного и подвесных изолято- [c.75]

    Распределительный щиток предназначен для распределения проводов к электродвигателю механического выпрямителя, высоковольтному трансформатору, дистанционным кнопкам управления и сигнализации, дверному блок-контакту, зайемлению и соединения остальных цепей электроагрегата. [c.65]

    В номощепии подстанции устанавливается щит управления б, па который подается ток низкого напряжения. Две фазы тока проходят через регулятор напряжения 2 — автотрансформатор в отечественных установках меняя величину низкого напряясения, получают соответственно разную величину высокого напряжения сообразно требуемым условиям электроочпстки. Далее ток поступает в высоковольтный однофазный трансформатор 3, где напряжение его повышается до 40 —75 юв переменный ток высокого напряжения подводится к двум щеткам механического выпрямителя 4. [c.385]

    Устройство электрофильтров. Установка для электрической очистки газов включает обычно электрофильтр и преобразовательную подстанцию с соответствующей аппаратурой. Для питания установки выпрямленным током высокого напряжения используютэлектрическиеагрегаты(рис.У-51), состоящие из регулятора напряження /, трансформатора 2, повышающего напряжение переменного тока с 380/220 в до 100 кв, и высоковольтного выпрямителя 3. После выпрямителей ток подводится к электродам 4 я 5 электрофильтра 6. Корпус электрофильтра обычно имеет прямоугольную [c.240]

    В результате многократного отражения на внутренней поверхности сферы создается усредненная освещенность. В регистрирующей схеме в качестве приемника энергии используют фотоумножитель ФЭУ-39, в интегрирующей сфере для него имеется специальное отверстие. Перед торцом фотокатода установлен затвор, позволяющий открывать фотоумножитель только на время измерения. Напряжение питания иа ФЭУ подается от высоковольтного выпрямителя ВС-22. Фотоумножитель подключен к селективному микровольтметру В6-4, настроенному на частоту модуляции светового иоюка. С выхода вольтметра усиленный сигнал поступает иа синхронный детектор КЗ-2 продетектированный сигнал записывается электронным потенциометром ЭПП-09, [c.169]

    Для усиления фотопотока, поступающего с фотоэлектронного умножителя, применяли фотоэлектрический усилитель Ф-120/2 с коэффициентом усиления Кус = 7000. Усилитель питается постоянным током. Индикатрисы записывали осциллографом Н-107. Для питания фотоэлектронного умножителя разработан малогабаритный высоковольтный стабилизированный выпрямитель, который представляет собой двухдиапазонный стабилизированный источник напряжения от 600 до 2000 В. Питание контрольноизмерительной аппаратуры установки осуществляется от универсального блока питания со следующими пределами напряжения и мощности 127 В — Ю Вт 27 В —”30 Вт 2×50 В—3 Вт 1 -7-8 В — 3 Вт 2 В — 0,6 Вт. Для удобства юстировки экспериментальной установки лазер, элементы оптической системы, фото- электронный умножитель и кювета крепятся на оптической скамье и закрываются светозащитным кожухом. [c.316]

    Радиоактивный препарат (500—1000 имп1мин) помещают в фиксированном положении в защитном домике счетчика. Устанавливают максимальную кратность пересчета и переключают прибор для работы. Затем, включив прибор, медленно вращают ручку регулировки высоковольтного выпрямителя по часовой стрелке до положения, при котором неоновые лампы пересчетного прибора начинают сигнализировать о прохождении импульсов (напряжение начала счета). Измеряют активность препарата при напряжении начала счета в теченне 2 мин. Повышают напряжение на счетчике на 50 в и повторяют измерение активности препарата. Снова повышают напряжение на 50 в и измеряют активность. Так поступают до тех пор, пока регистрируемая активность не возрастет на 20—30%. Не следует повышать напряжение настолько, что [c.342]

    Лазеры на углекислоте обладают наиболее высоким КПД по сравнению с другими, но обладают тем недостатком, что дают луч с длиной волны 10,6 мкм (инфракрасный диапазон). Так как многие тела плохо поглощают свет с такой длиной волны, их приходится покрывать обмазкаш с высоким коэффициентом поглощения на базе фосфатов или графита. Для работы в непрерывном режиме активная среда в излучателе возбуждается стационарным тлеющим разрядом между расположенными в излучателе электродами, к которым подведено напряжение от высоковольтного выпрямителя. В целях стабилизации разряда выпрямляющее устройство имеет круто падающую характеристику. [c.383]

    Оовоен также серийный выпуск электронных плавильных и нагревательных установок мощностью до 250 кет в виде высоковольтных агрегатов, питаемых постоянным током от ионных или полупроводниковых выпрямителей. В этих установках можно производить плавку и рафини-ровку любых металлов с очень высокой степенью их очистки и дегазации, зонную очистку и спекание. [c.17]

    Важнейшей деталью аппаратуры для электромиграции является источник постоянного тока. Для электрофореза на бумаге необходим источник с регулируемым напряжением порядка 200—600 б и с силой тока до 50 ма, для высоковольтного электрофореза — источник с напряжением 3000—10 ООО б и с силой тока до 500 ма. При электромиграции в геле или в пористой среде сила тока достигает 1 а при напряжении 200—600 в. Наиболее подходящим источником постоянного тока являются выпрямители с регулировкой выходного напряжения в требуемом диапазоне, питающиеся от обычной электросети. При небольшой силе тока достаточен, например, простой селеновый выпрямитель при электромиграции в агаре или силикагеле используют тиратроновые выпрямители и т. д. В большинстве случаев специального охлаждения не требуется. [c.542]

    В. Катодная защита от электрокоррозии. Этот вид коррозии может возникнуть в случае нахождения защищаемого оборудования в зоне действия сильных внешних источников тока, например вблизи от высоковольтных линий электропередачи, трамвайных путей и т. п. Если в таких системах возникают токи утечки, то они могут послужить причиной появления в защищаемой системе электрокоррозии. При этом виде коррозии (рис. 1.4.47) ток утечки возвращается через кабель к рельсам. В этом случае электродренаж через металлический кабель к конструкциям, вызывающим ток утечки, может предотвратить электрокоррозию. В ряде случаев такой защиты оказывается достаточно, однако иногда требуется надежно отвести ток и обеспечить эффективную катодную защиту объектов. Так, в непосредственной близости от выпрямителя на соседних с ним кабелях или трубопроводах часто наблюдается коррозия, обусловленная током утечки. В этом случае, если через дренаж нельзя отвести весь ток утечки, то катодная защита достигается с помощью принудительного отвода тока утечки (рис. 1.4.47, в). При этом в систему отвода тока утечки дополнительно включается выпрямитель, связанный с сетью питания. При сильных колебаниях потенциала отводимого тока утечки применяют защитный выпрямитель, ограничивающий ток. Перегрузка катодного защитного выпрямителя в результате короткого замыкания контактных проводов, разрыва рельсов или влияния кабеля и трубопровода при слишком высоких напряжениях может быть предотвращена с помопц.ю соответствующих предохранителей. [c.130]

    Основными частями генератора являются источники питания генераторной лампы (высоковольтный газотронный выпрямитель на 7 кет и ста-билизатор – траясфор-  [c.129]

    Высоковольтный выпрямитель может быть выполнен по однополу-периодной схеме с простым / С-фильтром. Недостатком такой схемы являются чрезмерно большие габариты и высокая стоимость трансформатора. Высоковольтный источник питания может быть также выполнен на базе высокочастотного генератора. Выходное напряжение генератора подается на повышающий трансформатор и далее на однополупериодный выпрямитель или схему удвоения. Очевидно, фильтрацию [c.302]

    Защита от мягкого излучения америция-241 сравнительно проста и немассивна вполне достаточно сантиметрового слоя свинца. В этом одна из причин появления многочисленных приборов с америцием-241. В частности, предложена конструкция просвечивающего аппарата размером чуть больше спичечного коробка для медицинских целей. Америциевый источник гамма-излучения — шарик диаметром 3—4 см — основа такого аппарата, которому, кстати, в отличие от рентгеновской установки пе нужна громоздкая высоковольтная аппаратура — трансформаторы, выпрямители, усилители и т. д. [c.413]


chem21.info

Высоковольтный выпрямитель и стабилизатор

В отличие от низковольтных источников питания напряжение вторичной обмотки трансформатора уже известно (230 В), поэтому расчет схемы стабилизатора напряжения должен будет производиться, исходя из этого значения несглаженного высоковольтного напряжения, а не в обратном порядке.

Мостовой выпрямитель будет заряжать накопительный конденсатор до напряжения 325 В. Хотя существуют герметизированные схемы-сборки мостовых выпрямителей, предназначенные для таких напряжений, все-таки безопаснее будет использовать дискретные полупроводниковые диоды, так как это позволит использовать увеличенные расстояния между выводами и уменьшит риск случайно закоротить выводы выпрямителя. Если принято решение использовать дискретные диоды, то следует использовать быстродействующие диоды с малым временем восстановления, такие, например, как RHRD4120 или STTA512D (предельное значение обратного напряжения VRRM составляет 1200 В). Эти диоды характеризуются как меньшими значениями токов выброса, так и меньшей их длительностью по сравнению со стандартными диодами с р-n переходами и, следовательно, меньшим уровнем шумов. Еще лучше было бы использовать диоды Шоттки, изготовленные из карбида кремния, для которых значение VRRM составляет 600 В, и которые стали доступными для применения в последнее время (например SDO1060). Если необходимо использовать диоды с напряжением VRRM > 1500 В, но со значением тока IDC < 500 мА, то могут оказаться полезными небольшие диоды, например BY228, которые первоначально предназначались для использования в качестве демпфирующих диодов (или гасящих диодов по номенклатуре изделий США) в схемах строчной развертки телевизоров. В рассматриваемых схемах, как правило, необходимы не очень высокие значения непрерывно потребляемого тока (около 100 мА), поэтому выбор будет остановлен на элементах с наиболее низкими значениями рабочих токов, но превышающих указанное значение, так как диоды, которые рассчитаны на более высокие значения токов всегда имеют меньшее быстродействие и более высокий уровень шумов.

Максимальное рабочее напряжение разрабатываемого стабилизатора напряжения должно составлять 300 В, тогда как максимальное напряжение на накопительном конденсаторе выпрямителя составит 325 В. Следовательно можно допустить суммарное падение напряжения 25 В, вызванное падениями напряжений на самом стабилизаторе, полупроводниковых диодах и пульсаций напряжения на конденсаторе. Если применить вновь ранее уже использовавшийся критерий, в соответствии с которым для напряжения пульсаций принималось значение 5%, то величина напряжения пульсаций составит примерно 17 В. Однако, падение напряжения в 17 В за счет пульсаций будет гораздо больше того значения от общей величины в 25 В, что можно было бы допустить с учетом дополнительных падений напряжения на других элементах. Поэтому было бы совсем неплохо уменьшить это значение до 10 В, либо еще меньше. В силу этого, идеальным для использования оказался бы накопительный конденсатор с емкостью 220 мкФ и низким значением эквивалентного последовательного сопротивления. Следует отметить, что такой конденсатор, заряженный до 325 В запасет на своих обкладках значительную энергию, поэтому при проверке цепей схемы с таким конденсатором надо проявлять особо высокую осторожность.

После вышеизложенных рассуждений можно приступить к рассмотрению схемы стабилизатора, начиная со схемы делителя напряжения (рис. 6.44).

Если по цепи делителя пропустить ток величиной 5 мА, то на нижнем резисторе падение напряжения должно составить примерно 300 В, поэтому понадобится резистор с сопротивлением 60 кОм и мощностью рассеяния 1,5 Вт. Если вместо этого резистора использовать другой, например, имеющий сопротивление 220 кОм и мощность рассеяния 2 Вт, то на этом резисторе будет выделяться мощность всего 0,4 Вт, которая оказывается вполне допустимой. Далее, такая замена дает и другое преимущество, заключающееся в том, что из-за того, что сопротивление резистора верхнего плеча делителя должно возрасти, то эквивалентное сопротивление Тевенина также увеличится, поэтому понадобится конденсатор, который шунтирует вывод Настройка (ADJ) на землю, с меньшим значением емкости. Так как цепь смещения не потребляет ток 5 мА(минимальное значение тока нагрузки, обеспечивающее правильное функционирование интегрального стабилизатора напряжения 317 серии), отсутствие нагрузки на выходе стабилизатора напряжения вызовет увеличение выходного напряжения. Однако лампы, для которых осуществляется предварительный подогрев катодов в режиме пониженного энергопотребления, будут всегда обеспечивать необходимую нагрузку стабилизатора, а поэтому данная проблема не окажется существенной.

Рис. 6.44 Практическая схема источника стабилизированного напряжения на 300 В

Примечание. Как транзистор MJE340, так и интегральный стабилизатор напряжения 317Т серии должны монтироваться с применением тщательно выполненной электрической изоляции на соответствующих теплоотводящих радиаторах. В качестве радиаторов можно использовать алюминиевый уголок с толщиной стенки 3 мм.

По нижнему резистору с сопротивлением 220 кОм протекает ток величиной 1,358 мА, причем ток 50 мкА является током смещения, протекающим через вывод Настройка интегрального стабилизатора напряжения 317 серии. По резистору верхнего плеча будет протекать, следовательно, ток 1,308 мА, который должен вызвать на нем падение напряжения 1,25 В. Таким образом, величина сопротивления верхнего резистора должна будет составить 955,7 Ом. Однако точность задания величины опорного напряжения интегрального стабилизатора 317 серии составляет 4%, поэтому есть небольшой допуск на величину сопротивления указанного резистора. Можно было бы использовать для подгонки переменный резистор, однако, их надежность гораздо меньше, чем у постоянных резисторов, а отказ одного из компонентов схемы с высоковольтными кремниевыми приборами может привести практически к катастрофическим последствиям. Более безопасным вариантом окажется использование постоянного резистора со стандартным значением сопротивления 1 кОм, но при этом надо предусмотреть место для установки дополнительного параллельно включаемого резистора, точная величина которого будет подбираться при настройке всей схемы, так называемый настраиваемый при регулировке элемент (в западной литературе часто обозначается, как АОТ).

Перед тем, как собирать схему, необходимо замерить и записать точное значение сопротивления резистора, обозначенного в схеме, как 220 кОм, мощность 2 Вт (так как вполне возможно, что его действительная величина будет немного отличаться от паспортной и составит, например, 221 Ом). После сборки схемы может оказаться, что выходное напряжение будет составлять, например, 290 В. Благодаря цепи делителя напряжения падение напряжения на резисторе 220 кОм должно составлять 288,75 В, поэтому величина протекающего по нему тока составит 1,307 мА. Для определения величины тока в верхнем резисторе необходимо из этого значения тока вычесть собственный ток смещения стабилизатора напряжения, равный 50 мкА (после чего величина тока верхнего резистора составит 1,257 мА). Умножение полученного значения тока на сопротивление 1 кОм верхнего резистора даст величину опорного напряжения (1,257 В)

После этого можно продолжить работу по настройке схемы. Если разделить напряжение 298,74 В на сопротивление 221 кОм, то получится ток, равный 1,352 мА. После этого надо вычесть ток смещения, равный 50 мкА, что даст значение 1,302 мА и разделить на него величину опорного напряжения 1,257 В. Результат деления даст требуемую величину сопротивления, равную 965,6 Ом. Включение резистора с сопротивлением 27 кОм параллельно с уже имеющимся резистором 1 кОм даст точное значение высоковольтного напряжения 300 В. Хотя описанный метод и кажется очень усложненным и нудным, он гарантирует гораздо более высокую степень безопасности по сравнению с использованием подстроечного переменного резистора.

Эквивалентное сопротивление Тевенина относительно вывода Настройка стабилизатора составляет примерно 950 Ом, что требует использования шунтирующего на землю конденсатора с емкостью 1,5 мкФ. Такой конденсатор очень дорог и занимает большой объем (рабочее напряжение 400 В), поэтому величина емкости обычно уменьшается до 470 пФ и используется соответствующий по типу стандартный конденсатор.

В рекомендациях по применению, которые заполонили технические паспорта этой группы стабилизаторов напряжения, требуется устанавливать резистор между эмиттером последовательно включенного транзистора и интегральным стабилизатором 317 серии, чтобы ограничить ток короткого замыкания. В других схемах, в частности, предложенной, Дж. Дж. Курцио (J. J. Curcio) также сохраняется данный резистор по целому ряду причин, хотя его величина часто уменьшена для снижения падения напряжения на нем. Введение подключенного к земле конденсатора на выходе стабилизатора обеспечивает ВЧ фильтрацию, что улучшает устойчивость работы стабилизатора напряжения. Некоторым недостатком такого варианта можно считать, что в этом случае будет отсутствовать возможность спасительного для стабилизатора закорачивания на землю возможных токов короткого замыкания.

Резистор с сопротивлением 31 кОм, включенный последовательно со стабилитроном с рабочим напряжением 15 В, задает ток стабилитрона. Для снижения шумов и максимальной устойчивости ток стабилитрона должен превышать значение 5 мА. Известно, что на выходе стабилизатора напряжение составляет 300 В, поэтому напряжение на верхней точке стабилитрона должно будет составлять 315 В. При величине тока стабилизатора 100 мА, на накопительном конденсаторе напряжение пульсаций составит примерно 5 В двойного амплитудного (пик-пикового) значения, поэтому среднее значение постоянного напряжения составит: (339 — 2,5) В = 336,5 В. Следовательно, напряжение на резисторе с сопротивлением 31 кОм составит (336,5 В — 315В), а ток, протекающий через стабилитрон, составит 7,2 мА. Поэтому, если возникнет необходимость изменить напряжение, поступающее на стабилизатор напряжения, то величина сопротивления этого резистора должна быть пересчитана заново, чтобы обеспечить необходимое значение тока стабилитрона.

 

tubeamplifier-narod.ru

Высоковольтный выпрямитель – Большая Энциклопедия Нефти и Газа, статья, страница 2

Высоковольтный выпрямитель

Cтраница 2


Высоковольтный выпрямитель: может быть выполнен по однополу-периодной схеме с простым: С-фильтром. Недостатком такой схемы являются чрезмерно большие габариты и высокая стоимость трансформатора. Высоковольтный источник питания может быть также выполнен на базе высокочастотного генератора.  [17]

Высоковольтный выпрямитель, вырабатывающий анодное напряжение для кинескопа, питается всплесками напряжения выходного каскада строчной развертки во время обратного хода луча.  [18]

Высоковольтный выпрямитель должен иметь заземленный Положительный полюс высокого напряжения. В ряде установок возможность заземления полюса предусмотрена конструкцией ( например, в установках типа ВСЭ-2500, ВСМ и др.), а в других необходимо переделать схему. Высокое напряжение подводится специальным бронированным кабелем, внутренняя проводка которого служит для подведения отрицательного полюса линии высокого напряжения, а наружная броня – положительного.  [20]

Высоковольтный выпрямитель 4 состоит из двух последовательно соединенных трехфазных мостов, собранных по схеме Ларионова. Для повышения надежности работы в мостах использованы лавинные кремниевые диоды. Система подогрева катода состоит из понижающего трансформатора 10 для нагрева нити подогревателя 15 и источника бомбардировки катода 16 постоянного напряжения до 1500 В. Для стабилизации режима подогрева катода в первичной цепи обоих источников включен тороидальный магнитный усилитель 12 или тиристорный блок.  [22]

Высоковольтный выпрямитель V собран по мостовой схеме на полупроводниковых диодах типа Д7ПС и дает на выходе 350 и 250 В нерегулируемого выпрямленного напряжения при максимальной сш.  [23]

Механические высоковольтные выпрямители выпрямляют однофазное или многофазное напряжение. Однофазные осуществляют двух-полупериодное или однополупериодное выпрямление. Из многофазных выпрямителей простейшую конструкцию имеет двухфазный выпрямитель. При однополупериодных выпрямителях в некоторых случаях спокойнее протекает работа электрофильтра – меньше число дуговых разрядов в камере.  [25]

Высоковольтный выпрямитель регулировки не требует. До под-ючения высокого напряжения к электронно-лучевой трубке 124) необходимо убедиться, чтобы ручка ЯРКОСТЬ стояла и вом положении.  [26]

Второй высоковольтный выпрямитель, принципиальная схема которого приведена на рис. 7 – 4, имеет электронную стабилизацию. Работа выпрямителя с электронной стабилизацией была рассмотрена выше. Напряжение на сети, после преобразования трансформатором Tplt выпрямляется вентилем В3 из селеновых шайб ВС-45-74, включенных по мостовой схеме. Опорное напряжение задается с помощью стабилитрона СГ-2С ( Ля), причем с целью получения высокой стабильности питание этого стабилитрона осуществляется уже стабилизированным с помощью лампы СГ-4С ( Л4), напряжением.  [28]

Остается высоковольтный выпрямитель, который тесно связан с каналом строчной развертки.  [29]

С высоковольтного выпрямителя на селеновых столбиках ( рис. 3 – 57) напряжение – 3 5 кв поступает на два делителя, питающих обе системы трубки. Потенциометром RSS подбирают одинаковую чувствительность по горизонтально отклоняющим пластинам обеих систем ЭЛТ. Напряжение на ускоряющий электрод 7 кв подается с выпрямителя, работающего по схеме удвоения на дву селеновых столбиках и высоковольтном трансформаторе.  [30]

Страницы:      1    2    3    4    5

www.ngpedia.ru

Высоковольтный выпрямитель – Большая Энциклопедия Нефти и Газа, статья, страница 4

Высоковольтный выпрямитель

Cтраница 4

Проверяется исправность высоковольтных выпрямителей, собранных на кенотронах / 727 и Лц &, а также исправность самой трубки Лю и надежность контактов ее ламповой панели.  [46]

Ручку реостата высоковольтного выпрямителя поворачивают до нулевого значения напряжения и после этого отключают его от сети.  [47]

Порядок включения высоковольтного выпрямителя, а) Перед включением ручку регулировки высокого напряжения / нужно поставить в крайнее левое положение. Убедиться в том, что идущий от счетчика высоковольтный кабель подходит к нужному гнезду выпрямителя и что во второе гнездо вставлена заглушка.  [48]

Контроль напряжения высоковольтного выпрямителя осуществляется по ( прибору, смонтированному на лицевой панели.  [49]

Положительный полюс высоковольтного выпрямителя заземлен и через колебательные контуры подведен к аноду лампы ГУ-10А.  [50]

В качестве высоковольтного выпрямителя используется кенотрон Лв.  [52]

Конденсаторы фильтров высоковольтных выпрямителей должны быть зашунтиро-ваны сопротивлениями, обеспечивающими их разряд в течение 2 – 5 с после выключения передатчика.  [53]

Конденсаторы фильтров высоковольтных выпрямителей должны быть зашун-тированы сопротивлениями, обеспечивающими их разряд в течение 2 – 5 с после выключения передатчика.  [54]

Они применяются как высоковольтные выпрямители, в ВЧ-схемах, быстродействующий фотодетекторы и др. В диодах Шоттки слой, обедненный осн. Диоды Шоттки используют гл.  [55]

Зарядное устройство представляет собой высоковольтный выпрямитель, собранный на кремниевых диодах. Питание устройства осуществляется током от сети через повышающий трансформатор. В качестве накопителя энергии в установке используется батареи конденсаторов ИМ5 – 150, соединенных параллельно при помощи высоковольтных коаксиальных кабелей с коммутирующим устройством разрядной цепи.  [56]

В приборе имеется внутренний высоковольтный выпрямитель с ручками дискретной и плавной регулировки напряжения. Напряжение источника может регулироваться в пределах от 700 до 2500 в. Ток нагрузки выпрямителя не должен превосходить 2 – Злш. Положительный полюс высокого напряжения заземлен.  [57]

Ниже рассмотрены особенности высоковольтного выпрямителя, лампового генератора и сварочного устройства с системой токоподводов.  [58]

Конденсаторы заряжаются от высоковольтного выпрямителя Тр2 – В через ограничительный резистор Rorp. Обмотка подмагничивания питается от низковольтного выпрямителя. Установка допускает как периодический режим с частотой следования ударов от 10 до 120 мин-1, так и выполнение одиночных ударов. Пиковое ускорение изменяют, регулируя начальное напряжение на конденсаторах.  [59]

Страницы:      1    2    3    4    5

www.ngpedia.ru

Высоковольтный выпрямитель и стабилизатор

В отличие от низковольтных источников питания напряжение вторичной обмотки трансформатора уже известно (230 В), поэтому расчет схемы стабилизатора напряжения должен будет производиться, исходя из этого значения несглаженного высоковольтного напряжения, а не в обратном порядке.

Мостовой выпрямитель будет заряжать накопительный конденсатор до напряжения 325 В. Хотя существуют герметизированные схемы-сборки мостовых выпрямителей, предназначенные для таких напряжений, все-таки безопаснее будет использовать дискретные полупроводниковые диоды, так как это позволит использовать увеличенные расстояния между выводами и уменьшит риск случайно закоротить выводы выпрямителя. Если принято решение использовать дискретные диоды, то следует использовать быстродействующие диоды с малым временем восстановления, такие, например, как RHRD4120 или STTA512D (предельное значение обратного напряжения VRRMсоставляет 1200 В). Эти диоды характеризуются как меньшими значениями токов выброса, так и меньшей их длительностью по сравнению со стандартными диодами с р-n переходами и, следовательно, меньшим уровнем шумов. Еще лучше было бы использовать диоды Шоттки, изготовленные из карбида кремния, для которых значение VRRMсоставляет 600 В, и которые стали доступными для применения в последнее время (например SDO1060). Если необходимо использовать диоды с напряжением VRRM > 1500 В, но со значением тока IDC < 500 мА, то могут оказаться полезными небольшие диоды, например BY228, которые первоначально предназначались для использования в качестве демпфирующих диодов (или гасящих диодов по номенклатуре изделий США) в схемах строчной развертки телевизоров. В рассматриваемых схемах, как правило, необходимы не очень высокие значения непрерывно потребляемого тока (около 100 мА), поэтому выбор будет остановлен на элементах с наиболее низкими значениями рабочих токов, но превышающих указанное значение, так как диоды, которые рассчитаны на более высокие значения токов всегда имеют меньшее быстродействие и более высокий уровень шумов.

Максимальное рабочее напряжение разрабатываемого стабилизатора напряжения должно составлять 300 В, тогда как максимальное напряжение на накопительном конденсаторе выпрямителя составит 325 В. Следовательно можно допустить суммарное падение напряжения 25 В, вызванное падениями напряжений на самом стабилизаторе, полупроводниковых диодах и пульсаций напряжения на конденсаторе. Если применить вновь ранее уже использовавшийся критерий, в соответствии с которым для напряжения пульсаций принималось значение 5%, то величина напряжения пульсаций составит примерно 17 В. Однако, падение напряжения в 17 В за счет пульсаций будет гораздо больше того значения от общей величины в 25 В, что можно было бы допустить с учетом дополнительных падений напряжения на других элементах. Поэтому было бы совсем неплохо уменьшить это значение до 10 В, либо еще меньше. В силу этого, идеальным для использования оказался бы накопительный конденсатор с емкостью 220 мкФ и низким значением эквивалентного последовательного сопротивления. Следует отметить, что такой конденсатор, заряженный до 325 В запасет на своих обкладках значительную энергию, поэтому при проверке цепей схемы с таким конденсатором надо проявлять особо высокую осторожность.

После вышеизложенных рассуждений можно приступить к рассмотрению схемы стабилизатора, начиная со схемы делителя напряжения (рис. 6.44).

Если по цепи делителя пропустить ток величиной 5 мА, то на нижнем резисторе падение напряжения должно составить примерно 300 В, поэтому понадобится резистор с сопротивлением 60 кОм и мощностью рассеяния 1,5 Вт. Если вместо этого резистора использовать другой, например, имеющий сопротивление 220 кОм и мощность рассеяния 2 Вт, то на этом резисторе будет выделяться мощность всего 0,4 Вт, которая оказывается вполне допустимой. Далее, такая замена дает и другое преимущество, заключающееся в том, что из-за того, что сопротивление резистора верхнего плеча делителя должно возрасти, то эквивалентное сопротивление Тевенина также увеличится, поэтому понадобится конденсатор, который шунтирует вывод Настройка (ADJ) на землю, с меньшим значением емкости. Так как цепь смещения не потребляет ток 5 мА(минимальное значение тока нагрузки, обеспечивающее правильное функционирование интегрального стабилизатора напряжения 317 серии), отсутствие нагрузки на выходе стабилизатора напряжения вызовет увеличение выходного напряжения. Однако лампы, для которых осуществляется предварительный подогрев катодов в режиме пониженного энергопотребления, будут всегда обеспечивать необходимую нагрузку стабилизатора, а поэтому данная проблема не окажется существенной.

Рис. 6.44 Практическая схема источника стабилизированного напряжения на 300 В

Примечание. Как транзистор MJE340, так и интегральный стабилизатор напряжения 317Т серии должны монтироваться с применением тщательно выполненной электрической изоляции на соответствующих теплоотводящих радиаторах. В качестве радиаторов можно использовать алюминиевый уголок с толщиной стенки 3 мм.

По нижнему резистору с сопротивлением 220 кОм протекает ток величиной 1,358 мА, причем ток 50 мкА является током смещения, протекающим через вывод Настройка интегрального стабилизатора напряжения 317 серии. По резистору верхнего плеча будет протекать, следовательно, ток 1,308 мА, который должен вызвать на нем падение напряжения 1,25 В. Таким образом, величина сопротивления верхнего резистора должна будет составить 955,7 Ом. Однако точность задания величины опорного напряжения интегрального стабилизатора 317 серии составляет 4%, поэтому есть небольшой допуск на величину сопротивления указанного резистора. Можно было бы использовать для подгонки переменный резистор, однако, их надежность гораздо меньше, чем у постоянных резисторов, а отказ одного из компонентов схемы с высоковольтными кремниевыми приборами может привести практически к катастрофическим последствиям. Более безопасным вариантом окажется использование постоянного резистора со стандартным значением сопротивления 1 кОм, но при этом надо предусмотреть место для установки дополнительного параллельно включаемого резистора, точная величина которого будет подбираться при настройке всей схемы, так называемый настраиваемый при регулировке элемент (в западной литературе часто обозначается, как АОТ).

Перед тем, как собирать схему, необходимо замерить и записать точное значение сопротивления резистора, обозначенного в схеме, как 220 кОм, мощность 2 Вт (так как вполне возможно, что его действительная величина будет немного отличаться от паспортной и составит, например, 221 Ом). После сборки схемы может оказаться, что выходное напряжение будет составлять, например, 290 В. Благодаря цепи делителя напряжения падение напряжения на резисторе 220 кОм должно составлять 288,75 В, поэтому величина протекающего по нему тока составит 1,307 мА. Для определения величины тока в верхнем резисторе необходимо из этого значения тока вычесть собственный ток смещения стабилизатора напряжения, равный 50 мкА (после чего величина тока верхнего резистора составит 1,257 мА). Умножение полученного значения тока на сопротивление 1 кОм верхнего резистора даст величину опорного напряжения (1,257 В)

После этого можно продолжить работу по настройке схемы. Если разделить напряжение 298,74 В на сопротивление 221 кОм, то получится ток, равный 1,352 мА. После этого надо вычесть ток смещения, равный 50 мкА, что даст значение 1,302 мА и разделить на него величину опорного напряжения 1,257 В. Результат деления даст требуемую величину сопротивления, равную 965,6 Ом. Включение резистора с сопротивлением 27 кОм параллельно с уже имеющимся резистором 1 кОм даст точное значение высоковольтного напряжения 300 В. Хотя описанный метод и кажется очень усложненным и нудным, он гарантирует гораздо более высокую степень безопасности по сравнению с использованием подстроечного переменного резистора.

Эквивалентное сопротивление Тевенина относительно вывода Настройка стабилизатора составляет примерно 950 Ом, что требует использования шунтирующего на землю конденсатора с емкостью 1,5 мкФ. Такой конденсатор очень дорог и занимает большой объем (рабочее напряжение 400 В), поэтому величина емкости обычно уменьшается до 470 пФ и используется соответствующий по типу стандартный конденсатор.

В рекомендациях по применению, которые заполонили технические паспорта этой группы стабилизаторов напряжения, требуется устанавливать резистор между эмиттером последовательно включенного транзистора и интегральным стабилизатором 317 серии, чтобы ограничить ток короткого замыкания. В других схемах, в частности, предложенной, Дж. Дж. Курцио (J. J. Curcio) также сохраняется данный резистор по целому ряду причин, хотя его величина часто уменьшена для снижения падения напряжения на нем. Введение подключенного к земле конденсатора на выходе стабилизатора обеспечивает ВЧ фильтрацию, что улучшает устойчивость работы стабилизатора напряжения. Некоторым недостатком такого варианта можно считать, что в этом случае будет отсутствовать возможность спасительного для стабилизатора закорачивания на землю возможных токов короткого замыкания.

Резистор с сопротивлением 31 кОм, включенный последовательно со стабилитроном с рабочим напряжением 15 В, задает ток стабилитрона. Для снижения шумов и максимальной устойчивости ток стабилитрона должен превышать значение 5 мА. Известно, что на выходе стабилизатора напряжение составляет 300 В, поэтому напряжение на верхней точке стабилитрона должно будет составлять 315 В. При величине тока стабилизатора 100 мА, на накопительном конденсаторе напряжение пульсаций составит примерно 5 В двойного амплитудного (пик-пикового) значения, поэтому среднее значение постоянного напряжения составит: (339 — 2,5) В = 336,5 В. Следовательно, напряжение на резисторе с сопротивлением 31 кОм составит (336,5 В — 315В), а ток, протекающий через стабилитрон, составит 7,2 мА. Поэтому, если возникнет необходимость изменить напряжение, поступающее на стабилизатор напряжения, то величина сопротивления этого резистора должна быть пересчитана заново, чтобы обеспечить необходимое значение тока стабилитрона.


ts-990s.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *