Рассчитать балку: Расчёт металлической балки онлайн (калькулятор).

alexxlab | 16.06.2021 | 0 | Разное

Содержание

Расчет опорных реакций балки на двух опорах онлайн

Расчет выполняется по следующей методике:

1. Заменяем распределенную нагрузку ее равнодействующей, которая является сосредоточенной силой. Для равномерно распределенной нагрузки равнодействующая равна произведению интенсивности нагрузки q на длину участка L, на котором она действует: Fq = q*L.

2. Обозначаем опоры. Общепринято их обозначать буквами А и В. Простая балка имеет одну шарнирно-неподвижную и одну шарнирно-подвижную опоры.

3. Освобождаемся от опор и заменяем их действие на балку реакциями.
Реакции опор при такой нагрузке будут только вертикальными.

4. Составляем уравнения равновесия вида:
MA = 0; MB = 0,
Моментом силы относительно точки называется произведение этой силы на плечо — кратчайшее расстояние от этой точки приложения силы (в общем случае — до линии действия силы).

5. Выполним проверку решения. Для этого составим уравнение равновесия: Y = 0,
Если оно удовлетворено, то реакции найдены правильно, а если нет, но в решении допущена ошибка.

6. Строим эпюру поперечных сил Qx. Для этого определяем значения поперечных сил в характерных точках. Напомним, что поперечная сила в сечении равна сумме проекций всех сил, расположенных только слева или только справа от рассматриваемого сечения, на ось, перпендикулярную оси элемента. Силу, расположенную слева от рассматриваемого сечения и направленную вверх, считают положительной (со знаком «плюс»), а направленную вниз — отрицательной (со знаком «минус»). Для правой части балки — наоборот.
В сечениях, соответствующих точкам приложения сосредоточенных сил, в том числе в точках приложения опорных реакций, необходимо определить два значения поперечной силы: чуть левее рассматриваемой точки и чуть правее ее. Поперечные силы в этих сечениях обозначаются соответственно Qлев и Qправ.
Найденные значения поперечных сил в характерных точках откладываются в некотором масштабе от нулевой линии. Эти значения соединяются прямыми линиями по следующим правилам:
а) если к участку балки нет распределенной нагрузки, то под этим участком значения поперечных сил соединяются прямой линией, параллельной нулевой линии;

б) если на участке балки приложена распределенная нагрузка, то под этим участком значения поперечных сил соединяются прямой, наклонной к нулевой линии. Она может пересекать или не пересекать нулевую линию.
Соединив все значения поперечных сил по указанным правилам, получим график изменения поперечных сил по длине балки. Такой график называется эпюрой Qx.

7. Строим эпюру изгибающих моментов Мx. Для этого определяем изгибающие моменты в характерных сечениях. Напомним, что изгибающий момент в рассматриваемом сечении равен сумме моментов всех сил (распределенных, сосредоточенных, в том числе и опорных реакций, а также внешних сосредоточенных моментов), расположенных только слева или только справа от этого сечения. Если любое из перечисленных силовых воздействий стремится повернуть левую часть балки по часовой стрелке, то оно считается положительным (со знаком «плюс»), если против — отрицательным (со знаком «минус»), а для правой части наоборот.
В сечениях, соответствующих точкам приложения сосредоточенных моментов, необходимо определить два значения изгибающего момента: чуть левее рассматриваемой точки и чуть правее ее.

Изгибающие моменты в этих точках обозначаются соответственно Млев и Мправ. В точках приложения сил определяется одно значение изгибающего момента.
Полученные значения откладываются в некотором масштабе от нулевой линии. Эти значения соединяются в соответствии со следующими правилами:
а) если на участке балки нет распределенной нагрузки, то под этим участком балки два соседних значения изгибающих моментов соединяются прямой линией;
б) если к участку балки приложена распределенная нагрузка, то под этим участком значения изгибающих моментов для двух соседних точек соединяются по параболе.

Пример решения балки:

Как рассчитать угловую балку - Доктор Лом

08-08-2014: Евгений

Добрый день!
Помогите, пожалуйста, рассчитать угловую ж.б. балку без опирания в точке сгиба, либо подскажите алгоритм расчета. Как в этом случае интерпретировать эту балку? Как две консольные балки, либо как балку на двух шарнирных опорах, развернутую на всю длину пролета?

Хотелось бы определить диаметр, кол-во арматуры, высоту балки и в принципе, возможен ли такой вариант балки без опирания в углу?
Оконный проем предположительно выглядит вот так:

Ширина проема по широкой стороне 3. 2 м, по узкой 1.425м.
Балка будет защемляться в стенах: плечо со стороны широкого проема на 6.2 м., со стороны узкого, на 5.4 м.
Нагрузка на балку (на всю длину, с учетом снеговой нагрузки): над проемом 3.2 м – 2500 кг, над проемом 1.425 м. – 3800 кг.
Нагрузка над защемленными частями балки (на всю длину на всю длину, с учетом снеговой нагрузки): над 6.2 метровой частью – 7200 кг., над 5.4 метровой частью – 12800 кг.,
Толщина стен 40 см, планируемая высота сечения балки 20-30 см, ширина от 20 до 35 см.

Заранее благодарен, 
Евгений.


08-08-2014: Доктор Лом

Попробую кратко. Для угловых балок существуют свои методы расчета (статей по этой теме у меня пока нет).

Можете для расчета воспользоваться следующим алгоритмом:

1. Угловая балка рассматривается как две консольных. Длина балок примерно 3 м и 1.225 м при ширине балок 0.4 м.

2. После подбора арматуры и бетона определяется прогиб условных концов балок под действующей равномерно распределенной нагрузкой.
Если прогиб обеих балок приблизительно одинаковый, то дополнительного перерасчета балок не требуется. Если прогиб одной из балок значительно больше прогиба другой балки, то балки следует пересчитать на дополнительное действие сосредоточенных нагрузок. Т.е. сначала вы определяете, какой прогиб будет каждой из балок при действии на конце сосредоточенной нагрузки (например 1000 кг), а затем к балке, прогиб которой меньше, прикладываете на конце дополнительную сосредоточенную нагрузку сверху, пропорциональную прогибу. А к балке, прогиб которой меньше, прикладываете на конце сосредоточенную нагрузку снизу, также пропорциональную прогибу.

3. На консольные балки будет также действовать дополнительный крутящий момент, возникающий из-за прогибов консольных балок (одна балка, прогибаясь на конце, будет поворачивать поперечные сечения перпендикулярной балки и наоборот). Соответственно следует определить значения крутящих моментов для балок (подробности в разделе "Крутящий момент") и пересчитать балки с учетом действия крутящих моментов.

Примерно так. По поводу планируемых сечений балки ничего не скажу. Тут считать надо, а расчетами я бесплатно не занимаюсь (на благотворительность совершенно нет времени).

От себя добавлю, что небольшая металлическая опора в углу (например квадратная труба сечением 60х60, а лучше 70х70 мм), значительно упростит и расчеты и монтаж, все одно стеклопакеты в углу как-то будут стыковаться.

Таблица нагрузки на двутавровую балку: расчет нагрузки на прогиб

Двутавр – вид фасонного металлопроката, способный принимать большие нагрузки, по сравнению с уголком и швеллером. В частном строительстве металлопрокат с сечением Н-образного профиля используется только при создании крупногабаритных строений. Для выбора подходящего номера двутавровой балки производят профессиональные расчеты на прочность и прогиб с помощью формул или с использованием онлайн-калькулятора. Исходными данными являются: длина пролета, тип закрепления балки, характер нагрузки, планируемый шаг размещения профильного проката, наличие или отсутствие дополнительных опор, марку стали.

Выбор типа балки, в зависимости от запланированных нагрузок

Производители предлагают металлические двутавры с несколькими типами поперечного сечения, предназначенные для различных эксплуатационных условий. Такая продукция, в зависимости от типа сечения, может применяться в крупногабаритном жилищном строительстве, при возведении зданий промышленного и гражданского назначения, в мостостроении. Для каждого из них в соответствующем стандарте имеется таблица, в которой указаны размерные параметры, масса 1 м, момент и радиус инерции, момент сопротивления. Эти характеристики используются в расчетах на прогиб и прочность.

С уклоном внутренних граней полок 6-12 %

Производство этого металлопроката регламентируется ГОСТом 8239-89. Благодаря скруглению внутренних граней около стенки, обладают высокой прочностью и устойчивостью к прилагаемым усилиям.

С параллельными внутренними гранями полок

Эта продукция выпускается в соответствии с ГОСТом 26020-83, выделяют следующие типы:

  • Б – нормальный. Применяется для эксплуатации под средними нагрузками.
  • Ш – широкополочный. Может использоваться для разрезки по продольной оси для получения таврового профиля. Тавр укладывается на один пролет. Целый двутавровый профиль – на один или несколько пролетов. Эти металлоизделия очень массивны. Плюсом их использования является возможность использования в качестве самостоятельного элемента без применения усиливающих деталей.
  • К – колонный. Это наиболее массивные профили. Имеют широкие, утолщенные полки и стенки. Применяются при устройстве большепролетных конструкций.

Типовые схемы расположения двутавра

Один из исходных параметров, учитываемых в расчетах, – схема закрепления балки и вид прилагаемой нагрузки. Большинство вариантов сводится к основным схемам:

Сбор нагрузок

Перед началом расчета производят сбор сил, действующих на двутавровую балку. В зависимости от продолжительности воздействия,их разделяют на временные и постоянные.

Таблица нагрузок на двутавровые балки

Постоянные Собственная масса балки и перекрытия. В упрощенном варианте вес межэтажного перекрытия без цементной стяжки с учетом массы балки принимают равным 350 кг/м2, с цементной стяжкой – 500 кг/м2
ДлительныеПолезныеЗависят от назначения здания
КратковременныеСнеговые, зависят от климатических условий региона
ОсобыеВзрывные, сейсмические. Для балок, работающих в стандартных эксплуатационных условиях, не учитываются. В онлайн-калькуляторах обычно не учитываются

Нагрузки разделяют на нормативные и расчетные. Нормативные устанавливаются строительными нормами и правилами. Расчетные равны нормативной величине, умноженной на коэффициент надежности. При усилии менее 200 кг/м2 коэффициент обычно принимают равным 1,3, при более 200 кг/м2 – 1,2. Шаг между балками принимают равным 1 м. В некоторых случаях, если это допустимо в конкретных эксплуатационных условиях, в целях экономии материалов его принимают равным 1,1 или 1,2 м.

При расчетах принимают во внимание марку стали. Для использования в условиях высоких нагрузок и при минусовых температурах востребованы двутавровые балки, изготовленные из низколегированных сталей.

Способы выбора оптимального размера сечения профиля

Наиболее точным вариантом подбора номера и типа двутаврового профиля является проведение профессиональных расчетов. Именно этот способ применяется при проектировании ответственных крупногабаритных объектов. При строительстве небольших зданий можно воспользоваться онлайн-калькулятором.

Совет! По результатам расчетов онлайн-калькуляторы обычно предлагают два или более вариантов профиля. Для обеспечения надежности строения рекомендуется отдавать предпочтение профилю с большим номером.

Для примерного определения размера профиля можно воспользоваться таблицей соответствия номера двутавровой балки максимально допустимой нагрузке:

Общая нагрузка, кг/м2Длина пролета
3 м при шаге, м4 м при шаге, м6 м при шаге, м
1,01,11,21,01,11,21,01,11,2
300101010101212161616
400101010121212202020
500101212121212202020

Из этой таблицы видно, что для двутавровой балки номер 10 максимальная длина пролета составляет 4 м при шаге 1,2 м, нагрузка – 400 кг/м2, для номера 16 длина пролета может достигать 6 м, нагрузка, которую он может выдержать, – 300 кг/м2, для профиля 20 – 6 м и нагрузка 400 кг/м2.

Расчет деревянных балок перекрытия калькулятор онлайн

Сделать надежное перекрытие можно только с правильно подобранным размером балок. Чтобы определить этот самый точный размер потребуется произвести расчет. Это можно сделать с помощью онлайн программы, которая представляет своего рода калькулятор.

Зачем надо рассчитывать?

Вся нагрузка на межэтажное перекрытие, ложится на деревянные балки, поэтому они являются несущими. От прочности балок перекрытия зависит целостность постройки и безопасность находящихся в ней людей.
Производить расчет деревянных элементов необходимо для выяснения допустимой вертикальной нагрузки, действующей на нее. Строительство новой или реконструкция старой постройки без предварительного расчета сечения несет огромный риск.

Выстроенное наугад перекрытие из слабых деревянных балок может в любой момент обрушиться, что приведет к большим финансовым затратам, а еще хуже, к травматизму людей. Взятые с запасом балки большого сечения создадут лишнюю нагрузку на стены и основание постройки.

Кроме определения прочности, существует расчет прогиба деревянных элементов. Он больше определяет эстетичную сторону строения. Даже если крепкая балка перекрытия выдержит припадающий на нее вес, она может прогнуться. Кроме испорченного внешнего вида, прогнувшийся потолок создаст дискомфорт пребывания в такой комнате. По нормам прогиб не должен превышать 1/250 длины балки.

Онлайн расчет

Сделать расчет всех элементов перекрытия можно через онлайн калькулятор. Это специальная программа, позволяющая подсчитать величину прогиба деревянной балки при заданных параметрах, а также определить оптимальное сечение для определенного перекрытия. Использование онлайн расчета поможет перед началом строительства учесть все нагрузки, припадающие на несущие конструкции. Можно сделать расчет нагрузки 1 м опоры и высчитать количество деревянных элементов необходимых для возведения крыши. Работает онлайн калькулятор просто надо лишь правильно внести требуемые данные.

Общая инструкция проведения онлайн расчета

Интерфейс программы довольно прост и с ним может разобраться даже новичок. Калькулятор состоит из маленьких окошек, куда необходимо вводить данные. После нажатия кнопки «рассчитать», пользователь получает готовый результат расчета.
На разных сайтах оформление программы может отличаться, но принцип ее действия одинаков:

  • Вначале потребуется выбрать в окошке программы конструкцию, для которой будет производиться расчет деревянных балок. Здесь надо знать ограничение некоторых показателей: максимальная длина элементов перекрытия составляет 12 м, а стропильной системы — 13 м.
  • Далее, в программу вводят данные максимального размера пролета между элементами перекрытия или опорами стропильной системы.
  • Указывается планируемое расстояние для монтажа балок. Надо учесть, что все десятичные значения в онлайн калькулятор вписывают с точкой, а не с запятой. Возьмем, к примеру, значение 0.9 м.
  • Следующими указывают стандартные нагрузки, которые для деревянного перекрытия составляют 400 кг/м2, а для стропильной системы — 220 кг/м2.
  • Последнее значение, вводимое в онлайн калькулятор, в градусах указывает наклон стропил.

Введенные в программу данные должны быть точными без погрешностей, иначе результат получится неправильным.

Выполнение расчета в ручном режиме

Многие опытные строители не доверяют подобным онлайн программам, предпочитая использовать для расчета обычный калькулятор. Производя в ручном режиме расчет по деревянным балкам, надо учесть следующие рекомендации:

  • Заход деревянных балок сделанных из бруса в бетонной или кирпичной постройке должен составлять не меньше 150 мм. Если вместо бруса используется доска, ее минимальный заход равен 100 мм. По деревянным домам показатель немного другой. Минимальный заход элемента, изготовленного с бруса или доски, составляет 70 мм;
  • При использовании металлических крепежей, пролет должен равняться длине конструкции перекрытия. На металлические части припадет вес перекрытия и других элементов;
  • Стандартная планировка дома имеет ширину пролета 2,5–4 м. Его можно перекрыть шестиметровым элементом. Большие пролеты перекрывают клееным брусом или выстраивают дополнительные стены-перегородки.

Применяя для расчета обычный калькулятор, эти рекомендации помогут сделать крепкое перекрытие.

Определение нагрузки

Перекрытие совместно с находящимися на нем предметами создает деревянным балкам определенную нагрузку. Точно ее высчитать можно только в проектных организациях. Примерный расчет делают калькулятором, пользуясь следующими рекомендациями:

  • Чердаки утепленные минватой и подшитые доской отличаются минимальной нагрузкой, примерно 50 кг/м2. Расчет нагрузки выполняют по формуле: значение запаса прочности — 1,3 умножают на показатель максимальной нагрузки — 70.
  • Если вместо минваты применяется более тяжелый теплоизолятор и массивная подшивная доска, нагрузка увеличивается в среднем до 150 кг/м2. Определить общую нагрузку можно следующим образом: значение запаса прочности умножается на средний показатель нагрузки и ко всему приплюсовывается размер требуемой нагрузки.
  • Делая расчет для мансарды, нагрузку допускают до 350 кг/м2. Это связно с тем, что добавляется вес пола, мебели и др.

С этим определением разобрались, теперь идем далее.

Определение сечения и шага установки элементов перекрытия

Данный процесс требует придерживаться следующих правил:

  1. Соотношение ширины к высоте конструкции приравнивается 1,4/1. Следовательно, ширина элементов перекрытия зависит от этого показателя и может варьироваться от 40 до 200 мм. Толщина и высота деревянных элементов зависит от толщины теплоизоляции примерно 100–3000 мм;
  2. Расстояние между элементами, то есть их шаг, может быть от 300 до 1200 мм. Здесь надо учесть габариты теплоизоляции с подшивочным материалом. В каркасной постройке расстояние между балками приравнивают к шагу каркасных стоек;
  3. Деревянным балкам допускается небольшой изгиб, который для перекрытия чердака составляет — 1/200, а для межэтажного — 1/350;
  4. При нагрузке 400 кг/м2 соотношение шага к сечению составляет 75/100 мм. Вообще, чем больше сечение балок, тем больше расстояние между ними.

Применяя калькулятор для определения сечения, необходимо пользоваться справочными материалами для более точных результатов.

Кроме полученных точных результатов, прочность конструкции зависит от качества материала.

Заготовки используют из хвойных пород дерева, влажностью до 14%. Древесина не должна быть поражена грибком и насекомыми. Ну а чтобы увеличить срок эксплуатации деревянной конструкции, заготовки перед монтажом необходимо обрабатывать антисептиком.
В следующем видео можно понаблюдать пример работы в программе для расчетов перекрытий.

Что еще почитать по теме?

Автор статьи:

Сергей Новожилов - эксперт по кровельным материалам с 9-летним опытом практической работы в области инженерных решений в строительстве.

Понравилась статья? Поделись с друзьями в социальных сетях:

Facebook

Twitter

Вконтакте

Одноклассники

Google+

Расчет балки | Стеллажи

Груз опирается на балки. Балки соединены болтами или замковыми устройствами со стойкой, которой передается нагрузка. В балке наибольшие напряжения возникают тогда, когда сила приложена к балке под углом 90° к ее оси. Подобный метод расчета балок на прочность используется в сопротивлении материалов долгие годы.
При максимальной расчетной нагрузке прогиб балки не должен превышать 1/180 расстояния между опорами. Так, если длина балки 180 дюйм (4,57 м), то 1/180 длины составит 1 дюйм (25,4 мм), другими словами, допускается прогиб не более 1 дюйма. Если длина балки 90 дюймов (2,28 м), то прогиб не может превышать 1/2 дюйма (12,7 мм). Величина прогиба балки не связана с ее прочностью. Однако если балка сильно деформируется, то сокращается просвет под балкой, что может повлиять на несущую способность всей пространственной конструкции. Новое требование, в противоположность сложившейся практике, сводится к тому, что деформация величиной в 1/180 длины балки, включает любое смещение в месте соединения балки со стойкой. В этом заключается новизна требования. Ранее все таблицы прогибов основывались на величине прогиба самой балки без учета деформации соединения.
Если изготовитель может воспользоваться обычными методами расчета, чтобы определить несущую способность балки, то нет необходимости прибегать к испытаниям. Однако, если поперечное сечение балки, в силу своей сложности, не позволяет рассчитать нагрузку и величину де формации, следует провести испытания по методике, разработанной институтом. В методике описывается как и в течение какого времени следует нагружать балку, как определить деформацию и допустимые нагрузки.
Условия испытания максимально приближены к реальным: силы, действующие на балку, распределены вдоль балки и направлены перпендикулярно к ее оси.
Допустимая для балки нагрузка определяется следующим образом: 1) как 1/2 от предельной разрушающей нагрузки; 2) как 2/3 нагрузки, при которой соединение между балкой и стойкой начинает терять первоначальную форму; 3) как нагрузка, при которой вертикальный прогиб балки составляет 1/180 расстояния между опорами. В качестве расчетной допустимой нагрузки на балку берется меньшая из трех названных величин.

Расчеты деревянных балок перекрытия - онлайн расчет по формуле

В любом здании имеются перекрытия. В собственных домах при создании опорной части, применяются деревянные балки, которые обладают рядом потребительских свойств:

  • доступность на рынке;
  • лёгкость обработки;
  • цена значительно ниже, нежели на стальные или бетонные конструкции;
  • высокая скорость и удобство монтажа.

Но, как и всякий строительный материал, деревянные балки имеют определённые прочностные характеристики исходя из которых производится расчёт на прочность, определяются необходимые размеры силовых изделий.

Основные виды балок

При бытовом строительстве используются несколько типов монтажа опорных элементов перекрытий:

  1. Простая балка, — представляет собой перекладину, имеющую две опорные точки на своих концах. Расстояние между опорами называется пролёт. Соответственно, при наличии нескольких точек крепления, бывают двух–, трёх–, и более пролётные неразрезные балки. В конструкции частного дома в этом качестве выступают промежуточные стеновые перегородки.
  2. Консоль, — брус жёстко закреплён одним концом в стене или имеет один свободный конец, с длиной более чем двукратный поперечный размер. Наличие двух свободных свисающих частей говорит о том, что наличествует двухконсольная конструкция. На практике – это горизонтальные балки, входящие в состав крыши и образующие навес.
  3. Заделанное изделие, — оба окончания жёстко вмонтированы в стену. Такая схема встречается при возведении вышерасположенных перегородок и стен, при этом балка получается вмонтированной в вертикальную конструкцию.

Нагрузки на горизонтальное перекрытие

Для расчёта на прочность необходимо знать нагрузки, возникающие в процессе эксплуатации перекрытия. Самые значительные величины возникают на первом этаже жилого здания. Меньшие значения получаются для мансардных конструкций и чердачных помещений. Напряжения в балке возникают:

  • от внутренних строительных конструкций, например, перегородок, лестниц;
  • от веса бытовой техники, мебели;
  • от массы людей.

Статическую нагрузку определяет два основных вида напряжения, – прогиб по всей длине и изгиб в месте опоры.

  1. Прогиб, – получается от веса вышерасположенных элементов. Максимальная стрелка отклонения получается в точке местонахождения объекта с самой большой массой и (или) посередине между опорами.
  2. Изгиб или излом, – это разрушение перекладины в точке заделки. Возникает от вертикальной нагрузки, а сама балка, воспринимающая это напряжение, выступает в роли рычага. С определённой величины усилия начинается критический изгиб, приводящий к разрушению поперечной опоры.

Для уменьшения влияния на прочность деревянного поперечного изделия от внутренних конструкций, их стараются располагать в местах нахождения нижних опор. Бытовую технику и мебель по возможности, целесообразно размещать вдоль стен или около разгрузочных конструкций.

Существует достаточно много типов деревянных балок, но наиболее доступны для широкой массы населения – это изделия прямоугольного или овального сечения. В последнем случае, балка представляет собой оцилиндрованное бревно, обрезанное с двух противоположных сторон.

Как рассчитать нагрузку на балку перекрытия

Общая нагрузка на элементы перекрытия складывается из собственного веса конструкции, веса от внутренних строительных изделий, опирающихся на балки, а также массы людей, мебели, бытовой техники и прочей хозяйственной утвари.

Полный расчёт, учитывающий все технические нюансы, достаточно сложен и выполняется специалистами при проектировании жилого дома. Для граждан, возводящих жильё по принципу «самостроя», более удобна упрощённая схема, в которую заложены требования СНиП, оговаривающие условия и технические характеристики деревянных материалов:

  • длина опорной части балки, контактирующей с фундаментом или стеной, не должна быть меньше 12 см;
  • рекомендуемое соотношение сторон прямоугольника 5/7, — ширина меньше высоты;
  • допустимый прогиб для чердачного помещения составляет не более 1/200, межэтажные перекрытия – 1/350.

По СНиП 2.01.07–85 эксплуатационная нагрузка на чердачную конструкцию с лёгким утеплителем из минеральной ваты составит:

G = Q + Gn * k, где:
  • k – коэффициент запаса прочности, обычно для строений малой этажности принимают значение 1,3;
  • Gn – норматив для подобного чердака, равный 70 кг/м²; при интенсивном использовании чердачного пространства значение составит не менее 150 кг/м²;
  • Q – нагрузка от самого чердачного перекрытия, равная 50 кг/м².

Пример расчёта

Дано:

  • чердак в жилом доме, использующийся для хранения различного хозяйственного инвентаря;
  • для утепления применён керамзит с лёгкой бетонной стяжкой.

Общая нагрузка составит G = 50 кг/м² + 150 кг/м² * 1,3 = 245 кг/м².

Исходя из практики, средние усилия на мансардном этаже не превышают значений в 300–350 кг/м². 

Для межэтажных перекрытий величины находятся в диапазоне 400–450 кг/м², причём большее значение следует принимать при расчётах первого этажа.

Совет. При выполнении перекрытий целесообразно принимать значения нагрузок, превышающие расчётные на 30–50%. Это повысит надёжность конструкции в целом и увеличит общий срок эксплуатации.

Как рассчитать необходимое количество балок

Число поперечных опор определяется нагрузками, приходящиеся на них, и максимальным прогибом чернового покрытия, выполненного, например, из доски или фанеры. На их жёсткость влияет собственная толщина изделий и шаг между точками опоры, то есть, расстояние от соседних балок.

Для помещения с малой эксплуатацией (чердак), допускается использовать доску толщиной не менее 25 мм, при шаге между опорами 0,6–0,75 метра. Межэтажное перекрытие жилой зоны целесообразно осуществлять половой доской с размером не менее 40 мм и расстоянием по ближайшим точкам крепления не более 1 метра.

Пример расчёта

Чердачное пространство. Длина между стенами составляет 5 метров. Слабая эксплуатационная нагрузка, – хранение всякой утвари. Настил осуществляется из обрезной сухой доски хвойных пород толщиной 25 мм. Принимая максимальный шаг в 0,75 метра, количество опорных точек должно составить:

5 м / 0,75 м = 6,67 шт., округляя до целого числа в большую сторону – 7 балок.

Тогда уточнённый шаг равен:

5 м / 7 шт = 0,715 м.

Межэтажное перекрытие. Длина между стенами 5 метров. Первый этаж с максимальной нагрузкой. Черновой пол выполняется из изделия с размером 40 мм. Шаг по опорам принимается в 1 метр.

Количество точек крепления составляет: 5 м / 1 м = 5 шт.

Совет. Несмотря на невысокую нагрузку, приходящуюся на чердачное пространство, целесообразно применять требования, относящиеся к межэтажным перекрытиям, — в будущем может появиться вероятность перестройки в жилое мансардное помещение.

Как рассчитать необходимое сечение традиционной деревянной балки перекрытия

Прочностные характеристики опорного элемента определяются геометрическими параметрами, – длиной и поперечным сечением. Длина, как правило, даётся из внутренних размеров межстенного пространства и закладывается на стадии проектирования здания. Второй параметр, – сечение, можно изменять в зависимости от предполагаемых нагрузок в процессе строительства.

Пример расчёта

Чтобы избежать достаточно мудрёных математических выкладок, приводим рекомендуемые данные, которые сведены в таблицу. При имеющихся размерах пролёта и шага, можно определить примерное сечение бруса или диаметр бревна. Расчёт осуществлялся исходя из усреднённой нагрузки в 400 кг/м²

Таблица 1

Сечение прямоугольного бруса:

Шаг, метрПролёт, метр
2,03,04,05,06,0
0,675 х 10075 х 200100 х 200150 х 200150 х 225
1,075 х 150100 х 175125 х 200150 х 225175 х 250

Таблица 2

Диаметр оцилиндрованного бревна:

Шаг, метрПролёт, метр
2,03,04,05,06,0
0,6110140170200230
1,0130170210240270

Примечание: В таблицах приведены минимальные допустимые размеры. При проектировании собственного здания, необходимо принимать те размеры деревянных изделий, которые присутствуют на местном строительном рынке региона, причём значения требуется округлять в большую сторону.

Совет. При отсутствии необходимого бруса, его можно заменить досками, скреплёнными между собой посредством столярного клея и саморезов. Ещё один вариант усиления – увеличить сечение бруса, добавив к его боковым сторонам доски определённой толщины.

Совет. Продлить срок службы и снизить показатель горючести поможет обработка специальными огне– и биозащитными средствами. Кроме этого, такая операция способствует небольшому увеличению прочности деревянных изделий.

Совет. Тем, кто всё-таки желает провести математические изыскания, по расчётам деревянных балок, для перекрытий, целесообразно заглянуть в интернет с этим вопросом, — имеется достаточное количество сайтов, на которых выложены электронные калькуляторы по определению параметров элементов силовых конструкций.

Статья была полезна?

0,00 (оценок: 0)

Не удается найти страницу | Autodesk Knowledge Network

(* {{l10n_strings.REQUIRED_FIELD}})

{{l10n_strings.CREATE_NEW_COLLECTION}}*

{{l10n_strings.ADD_COLLECTION_DESCRIPTION}}

{{l10n_strings.COLLECTION_DESCRIPTION}} {{addToCollection. description.length}}/500 {{l10n_strings.TAGS}} {{$item}} {{l10n_strings.PRODUCTS}} {{l10n_strings.DRAG_TEXT}}  

{{l10n_strings.DRAG_TEXT_HELP}}

{{l10n_strings.LANGUAGE}} {{$select.selected.display}}

{{article.content_lang.display}}

{{l10n_strings. AUTHOR}}  

{{l10n_strings.AUTHOR_TOOLTIP_TEXT}}

{{$select.selected.display}} {{l10n_strings.CREATE_AND_ADD_TO_COLLECTION_MODAL_BUTTON}} {{l10n_strings.CREATE_A_COLLECTION_ERROR}} Калькулятор деревянных балок

| Какой размер мне нужен?

Рассчитайте необходимый размер балки, балки или перекрытия из сосны № 2 или LVL. Охватывает любой пролет и любую нагрузку с высокой точностью. Дважды проверьте себя с помощью этих диаграмм. Работает только с равномерно распределенными нагрузками.

Есть два разных типа нагрузок. Это либо внешняя, либо внутренняя нагрузка. Другими словами, он будет либо на внешней стене, либо где-то внутри. Нагрузка на внешнюю стену с чистыми пролетными фермами составляет ровно половину нагрузки на каждую стену.Например, если размер здания составляет 24 x 24 дюйма, и в нем есть фермы, а нагрузка на крышу будет составлять 30 фунтов снеговой нагрузки, а потолок без хранилища будет таким. Это будет вдвое больше нагрузки на внешние стены по сравнению со зданием с центральной стеной. Калькулятор учитывает все это. Вам нужно только выбрать все применяемые нагрузки.

Большинство внутренних балок должны учитывать нагрузку на крышу. Если есть какие-либо вопросы по другому поводу, вам следует обратиться к поставщику или инженеру.Этот калькулятор соответствует 90% приложений в Международной книге кодов жилищного строительства 2012 года.

Здравый смысл

По моему опыту никогда не использовать балку меньше двухслойной 2 x 8. Независимо от того, что сказано в технических характеристиках. Эти небольшие области обычно представляют собой дверные проемы внутри, и людей учат, что эти области являются самым надежным местом в доме в случае возникновения чрезвычайной ситуации.

Подшипник

Согласно кодам IRC 2012 года любая балка, балка или свод никогда не должны иметь пеленг менее 1 1/2 дюйма.Что-нибудь 5 'и выше мы всегда как минимум вдвое калечим. На более длинных пролетах балке может потребоваться гораздо больше места для опоры, как указано в этой таблице.

Крепление

Балки, состоящие из более чем одного слоя, должны крепиться вместе гвоздями или болтами. Код IRC 2012 года требует минимум 32 ″ O.C. в шахматном порядке с использованием гвоздя размером не менее 3 ″ на 120 ″. На собственном опыте мы научились использовать гвоздь с пазом размером не менее 3 1/4 дюйма x 131 дюйм в столбике из четырех на каждую ногу вниз по ламинату.

Единственный раз, когда вам когда-либо понадобится использовать болты, будет, если материал будет иметь такие серьезные деформации, как плохая «чашка», которую невозможно преодолеть гвоздями.

Просто поддерживаемый калькулятор пучка | calcresource

Предпосылки

Оглавление

Введение

Балка с простой опорой - одна из самых простых конструкций. У него всего две опоры, по одной с каждой стороны. Одна штифтовая опора и роликовая опора.Оба они запрещают любое вертикальное движение, позволяя, с другой стороны, свободно вращаться вокруг них. Роликовая опора также позволяет балке расширяться или сжиматься в осевом направлении, хотя свободное горизонтальное движение предотвращается другой опорой.

Удаление любой из опор или установка внутреннего шарнира приведет к тому, что балка с простой опорой перейдет в механизм, то есть тело перемещается без ограничений в одном или нескольких направлениях. Очевидно, это нежелательно для несущей конструкции. Следовательно, балка с простой опорой не обеспечивает избыточности с точки зрения опор.Если произойдет локальный сбой, вся конструкция рухнет. Структуры такого типа, которые не обеспечивают избыточности, называются критическими структурами или детерминантами. Напротив, конструкция, которая имеет больше опор, чем требуется для ограничения ее свободного движения, называется избыточной или неопределенной конструкцией .

Допущения

Статический анализ любой несущей конструкции включает оценку ее внутренних сил и моментов, а также ее прогибов.Как правило, для плоской конструкции с плоской нагрузкой интересующими внутренними воздействиями являются осевая сила N, поперечная сила сдвига V и изгибающий момент M. Для балки с простой опорой, которая несет только поперечные нагрузки, осевая сила всегда равна ноль, поэтому им часто пренебрегают. Результаты расчетов на странице основаны на следующих предположениях:

  • Материал однороден и изотропен (другими словами, его характеристики одинаковы во всех точках и в любом направлении)
  • Материал линейно эластичный
  • Нагрузки прикладываются статично (они не меняются со временем)
  • Поперечное сечение одинаково по всей длине балки
  • Прогибы небольшие
  • Каждое поперечное сечение, которое изначально является плоским, а также перпендикулярно продольной оси, остается плоской и перпендикулярно отклоненной оси. Это тот случай, когда высота поперечного сечения значительно меньше длины балки (в 10 и более раз), а также поперечное сечение не является многослойным (не сечение сэндвич-типа).

Последние два предположения удовлетворяют кинематическим требованиям теории пучка Эйлера-Бернулли, которая здесь также принята.

Условные обозначения

Для расчета внутренних сил и моментов при любом разрезе сечения балки необходимо условное обозначение. Здесь приняты следующие значения:

  1. Осевая сила считается положительной, когда она вызывает растяжение детали.
  2. Сдвигающая сила является положительной, когда она вызывает вращение детали по часовой стрелке.
  3. Изгибающий момент является положительным, когда он вызывает растяжение нижнего волокна балки и сжатие верхнего волокна.

Эти правила хотя и не являются обязательными, но достаточно универсальны. Другой набор правил, если следовать им последовательно, также даст те же физические результаты.

Обозначения
  • E: модуль упругости материала (модуль Юнга)
  • I: момент инерции поперечного сечения вокруг упругой нейтральной оси изгиба
  • L: общий пролет балки
  • R: опора реакция
  • d: прогиб
  • M: изгибающий момент
  • V: поперечная сила сдвига
  • \ theta: slope

Балка с простой опорой и равномерно распределенной нагрузкой

Нагрузка w распределяется по всему пролету балки с постоянной величиной и направление.Его размеры - сила на длину. Общее количество силы, приложенной к балке, равно W = w L, где L - длина пролета. В зависимости от обстоятельств может быть задана либо общая сила W, либо распределенная сила на длину w.

В следующей таблице представлены формулы, описывающие статический отклик простой балки при равномерно распределенной нагрузке w.

90 172
Балка с простой опорой и равномерной распределенной нагрузкой (UDL)
Количество Формула
Реакции: R_A = R_B = {1 \ over202} wL уклоны: \ theta_B = - \ theta_A = \ frac {wL ^ 3} {24E I}
Предельный изгибающий момент: M_u = {1 \ over8} w L ^ 2
Предельное усилие сдвига : V_u = {1 \ over2} w L
Предельное отклонение: d_u = \ frac {5w L ^ 4} {384 EI}
Изгибающий момент при x: M (x) = {1 \ over2} wx \ left (L - x \ right)
Сила сдвига в x: V (x) = {1 \ over2} w \ left (L -2 x \ right)
Прогиб в точке x: d (x) = \ frac {wx (L ^ 3 - 2 L x ^ 2 + x ^ 3)} {24 EI}
Наклон в точке x: \ theta ( x) = - \ frac {w (L ^ 3-6 L x ^ 2 + 4 x ^ 3)} {24 EI}

Балка с простой опорой и точечной силой в середине

Сила сосредоточена в одной точке, расположенной в середине балки. Однако на практике сила может распространяться на небольшую площадь, хотя размеры этой области должны быть существенно меньше длины пролета балки. В непосредственной близости от приложения силы ожидаются концентрации напряжений, и в результате отклик, предсказываемый классической теорией балки, может быть неточным. Однако это только местное явление. По мере удаления от места расположения силы результаты становятся действительными в силу принципа Сен-Венана.

В следующей таблице представлены формулы, описывающие статический отклик простой балки под действием сосредоточенной точечной силы P, приложенной в середине.2)} {16 E I} &, x> L / 2 \ end {align} \ right.

где:

\ строго {x} = L-x

Балка с простой опорой и точечной силой в произвольном положении

Сила сосредоточена в одной точке в любом месте пролета балки. Однако на практике сила может распространяться на небольшую площадь. Однако, чтобы считать силу сосредоточенной, размеры области приложения должны быть существенно меньше длины пролета балки. 3} {6EI} &, x> a \ end {align} \ right.2} {2 E I} &, x> a \ end {align} \ right.

где:

b = La

\ строго {x} = Lx

Балка с простой опорой с точечным моментом

В этом случае момент накладывается на одну точку балки в любом месте пролета балки. С практической точки зрения, это может быть пара сил или элемент на кручение, соединенный из плоскости и перпендикулярно балке.

В любом случае область приложения момента должна распространяться на небольшую длину луча, чтобы ее можно было успешно идеализировать как сосредоточенный момент в точке.Хотя в непосредственной близости от области применения ожидается, что результаты, предсказанные с помощью классической теории пучка, будут неточными (из-за концентраций напряжений и других локализованных эффектов), по мере того, как мы удаляемся, предсказанные результаты полностью верны, как заявил Святой -Венантный принцип.

В следующей таблице представлены формулы, описывающие статический отклик простой балки под действием сосредоточенного момента M точки, приложенного на расстоянии a от левого конца. 2 )} {6E IL}

Предельный изгибающий момент: M_u = \ left \ {\ begin {align} & {Mb \ over L} &, \ textrm {if:} a \ le L / 2 \ \ - & {Ma \ over L} &, \ textrm {if:} a> L / 2 \ end {align} \ right.2} {2 E I} &, x> a \ end {align} \ right.

где:

b = La

\ строго {x} = Lx

Балка с простой опорой и треугольной нагрузкой

Нагрузка распределяется по всему пролету балки, однако ее величина не константа, но изменяется линейно, начиная от нуля на левом конце до своего пикового значения w_1 на правом конце. Размеры w_1 - сила на длину. Общее количество силы, приложенной к балке, равно W = {1 \ over2} w L, где L - длина пролета.

Ориентация треугольной нагрузки важна! Формулы, представленные в этом разделе, были подготовлены для случая восходящей нагрузки (слева направо), как показано на схеме. Для нисходящей нагрузки вы можете отразить балку так, чтобы ее левый конец (точка A) был наименее загруженным. Ось x и все результаты также будут отражены.

В следующей таблице представлены формулы, описывающие статический отклик простой балки при линейно изменяющейся (треугольной) распределенной нагрузке, восходящей слева направо.4} {24EIL}

где:

C = \ sqrt {15- \ sqrt {120}} \ left (\ sqrt {15} + \ sqrt {50} \ right) \ приблизительно 22.01237

Балка с простой опорой и трапецеидальной нагрузкой

Нагрузка распределяется по всему пролету балки и имеет линейно изменяющуюся величину, начиная с w_1 на левом конце и заканчивая w_2 на правом конце. Размеры w_1 и w_2 - сила на длину. Общее количество силы, приложенной к балке, равно W = {L \ over2} (w_1 + w_2), где L - длина пролета.

Значения w_1 и w_2 могут быть присвоены произвольно. Первое не обязательно должно быть меньше второго. Они могут принимать даже отрицательные значения (одно или оба).

В следующей таблице представлены формулы, описывающие статический отклик простой балки при переменной распределенной нагрузке трапециевидной формы. 3} {24EI}

где:

w_x = w_1 + {(w_2-w_1) x \ over L}

901 20

Балка с простой опорой и трапециевидным распределением нагрузки типа плиты

Такое распределение нагрузки типично для балок по периметру плиты.Распределение имеет трапециевидную форму с максимальной величиной w внутри балки, а на двух ее концах становится равной нулю. Размеры (\ w \) - сила на длину. Общее количество силы, приложенной к балке, равно W = w (La / 2-b / 2), где L - длина пролета, а a, b - длины с левой и правой стороны балки соответственно, где распределение нагрузки равно разная (треугольная).

В следующей таблице представлены формулы, описывающие статический отклик простой балки при трапецеидальном распределении нагрузки, как показано на схеме выше.3

Балка с простой опорой и частично распределенной равномерной нагрузкой

Нагрузка распределяется на часть пролета балки с постоянной величиной w, в то время как оставшийся пролет разгружен. Размеры w - сила на длину. Общее количество силы, приложенной к балке, равно W = \ left (L-a-b \ right) w, где L - длина пролета, а a, b - длины без нагрузки с левой и правой стороны балки, соответственно.

В следующей таблице представлены формулы, описывающие статический отклик простой балки при частично распределенной равномерной нагрузке.2} {2 E I} &, x \ ge L-b \ end {align} \ right.

где:

\ острый {x} = Lx

x_a = xa

L_w = Lab

Балка с простой опорой и частично распределенной трапециевидной нагрузкой

Нагрузка распределяется на часть пролет балки, имеющий линейно изменяющуюся величину от w_1 до w_2, а оставшийся пролет не нагружен. Размеры w_1 и w_2 - сила на длину. Общее количество силы, приложенной к балке, равно W = {L-a-b \ over2} (w_1 + w_2), где L - длина пролета, а a, b - длины без нагрузки с левой и правой стороны балки соответственно.

Значения w_1 и w_2 могут быть присвоены произвольно. Первое не обязательно должно быть меньше второго. Они могут принимать даже отрицательные значения (одно или оба).

Это самый общий случай. Формулы для частично распределенных равномерных и треугольных нагрузок можно получить, соответствующим образом задав значения w_1 и w_2. Кроме того, соответствующие случаи для полностью нагруженного пролета можно получить, установив a и b равными нулю.

В следующей таблице представлены формулы, описывающие статический отклик простой балки при частично распределенной трапециевидной нагрузке.3

Статьи по теме

Понравилась эта страница? Поделись с друзьями!

Расчет нагрузок на коллекторы и балки | Строительство и строительные технологии

Обратите внимание: Эта старая статья нашего бывшего преподавателя остается доступной на нашем сайте в архивных целях. Некоторая информация, содержащаяся в нем, может быть устаревшей.

Понимание того, как нагрузки передаются через конструкцию и действуют на элементы конструкции, является первым шагом к определению размеров коллекторов и балок

Пол Физетт - © 2005

Большинство строителей автоматически выбирают двойные заголовки -2 x 8 или -2 x 10 для обрамления окон и дверей в каждом доме, который они строят. Эти коллекторы работают для поддержки большинства жилых помещений и по совпадению удерживают верхние части окон на одинаковой высоте. Замечательное решение, но эффективно ли это и экономично ли использование материала? То же самое верно и для балок, таких как конструкционные коньковые балки и центральные балки. Слишком часто строители собирают брус размером 2 дюйма, чтобы выдержать нагрузки на крышу и пол, не рассматривая другие варианты. Вы не сможете превзойти пиломатериалы для большинства небольших оконных коллекторов, но по мере увеличения пролётов и нагрузок более прочные материалы становятся лучшим выбором.Пиломатериалы ограничивают возможности дизайна и в некоторых случаях просто не работают. Parallam, Timberstrand, клееный брус и Anthony Power Beam - примеры альтернативных материалов, которые предоставляют строителям захватывающий выбор.

В этой серии из двух частей мы рассмотрим, как пиломатериалы и эти инженерные материалы подходят для использования в качестве коллекторов и балок. Часть I покажет вам, как отследить структурные нагрузки до коллекторов и балок. В части II будут рассмотрены процедуры определения размеров, характеристики и стоимость этих материалов для нескольких приложений (см. «Определение размеров проектируемых балок и коллекторов» для части 2).

Делаю работу

Работа коллекторов и балок проста. Они передают нагрузки сверху на фундамент снизу через сеть конструктивных элементов. Идея определения размеров коллекторов и балок проста: сложите все временные и статические нагрузки, действующие на элемент, а затем выберите материал, который будет выдерживать нагрузку. Балка должна быть достаточно прочной, чтобы не сломаться (значение Fb), и достаточно жесткой, чтобы она не прогибалась чрезмерно под нагрузкой (значение E).Однако процесс определения размеров этих структурных элементов может быть сложным, если вы не инженер. Вот упрощенный подход, который поможет вам указать подходящий материал для многих приложений.

Первый шаг такой же для пиломатериалов и конструкционных древесных материалов: сложите все нагрузки, действующие на жатку или балку, а затем преобразуйте эту нагрузку в значение , какую нагрузку будет ощущать каждая прямая опора жатки или балки . Говоря лучевым языком, вы говорите: этот заголовок должен нести X-фунтов на линейный фут.Этот перевод является ключом к любой проблеме определения размеров конструкции. Вооружившись этой информацией, вы можете определить минимальный размер, пролет или силу балки (кредит джулио). Размеры инженерных деревянных компонентов определяются с помощью таблиц пролетов, которые соответствуют различным пролетам и фунтам на фут балки. Для пиломатериалов необходимо произвести математические расчеты.

Нагрузки

считаются либо распределенными , либо точечными нагрузками. Слой песка, равномерно распределенный по поверхности, является примером чистой распределенной нагрузки.Каждый квадратный фут поверхности испытывает одинаковую нагрузку. Текущие и статические нагрузки, указанные в строительных нормах и правилах для крыш и полов, являются приблизительными значениями распределенных нагрузок. Точечные нагрузки возникают, когда груз накладывается на одно место в конструкции, например на колонну. Нагрузка на опорную конструкцию распределяется неравномерно. Анализ точечной нагрузки лучше доверить инженерам. Мы будем рассматривать только распределенные нагрузки. Это позволит нам определять размеры балок для наиболее распространенных приложений.


Рисунок 1

Давайте проследим распределенные нагрузки для нескольких разных домов.Предположим, что все они расположены в одном климате, но имеют разные пути загрузки из-за конструкции. Эти примеры показывают, как распределенные нагрузки распределяются между элементами конструкции. Наши образцы домов находятся в районе, где снеговая нагрузка составляет 50 фунтов на квадратный фут площади крыши (снег рассматривается как временная нагрузка). Само собой разумеется, что в более теплом климате снеговая нагрузка, вероятно, была бы меньше, поэтому вам необходимо проверить свою кодовую книгу на предмет временных и статических нагрузок в вашем регионе. Все нагрузки указаны в фунтах на квадратный фут горизонтальной проекции (площадь пятна контакта). (СМ. РИСУНОК 1)

Заголовки


Рисунок 2

Пример заголовка № 1

Здесь каждый квадратный фут кровельной системы обеспечивает 50 фунтов динамической нагрузки и 15 фунтов статической нагрузки (всего 65 фунтов на квадратный фут) на конструктивную опорную систему. Помните, что эти нагрузки равномерно распределяются по всей поверхности крыши. Наружная стена (и коллекторы внутри) будут нести все нагрузки от средней точки дома (между опорными стенами) к внешней стороне дома (включая свес крыши).Расстояние в этом случае составляет 12 футов + 2 фута = 14 футов. Таким образом, каждый линейный фут стены должен выдерживать нагрузки, создаваемые полосой шириной 1 фут в этом районе 14 футов. С технической точки зрения стена имеет ширину притока 14 футов. Отсюда мы легко можем видеть, что каждая линейная опора стены поддерживает:

Условия:

живая нагрузка (снег):

50 фунтов на квадратный фут x 14 футов = 700 фунтов на линейный фут

Собственная нагрузка на крышу:

15 фунтов на квадратный фут x 14 футов = 210 фунтов на линейный фут

общая нагрузка:

= 910 фунтов на линейный фут

Важно перечислить временную нагрузку, постоянную нагрузку и общую нагрузку отдельно, поскольку временная нагрузка используется для расчета жесткости, а общая нагрузка используется для расчета прочности.


Рисунок 3

Пример заголовка 2

Этот дом идентичен нашему первому примеру, за исключением того, что он построен из палки. В результате временная нагрузка, статическая нагрузка и распределение сил различны. В отличие от стропильной крыши, временная нагрузка и собственная нагрузка на стропила и балки перекрытия должны учитываться как отдельные системы. Поскольку чердак можно использовать для хранения, временная нагрузка на чердак в соответствии с нормами составляет 20 фунтов на квадратный фут.

Условия:

живая нагрузка (снег):

50 фунтов на квадратный фут x 14 футов = 700 фунтов на линейный фут

Собственная нагрузка на крышу:

10 фунтов на квадратный фут x 14 футов = 140 фунтов на линейный фут

живая нагрузка потолка:

20 фунтов на квадратный фут x 6 футов = 120 фунтов на линейный фут

статическая нагрузка потолка:

10 фунтов на квадратный фут x 6 футов = 60 фунтов на линейный фут

общая нагрузка:

= 1020 фунтов на линейный фут


Рисунок 4

Пример заголовка 3

Опять же, у этого дома такая же ширина, но у него 2 уровня. Нагрузки на нижний коллектор создают крыша, верхние стены и система 2-го этажа. В Стандартах архитектурной графики вес внешней стены размером 2 × 6 составляет 16 фунтов на фут 2 . Таким образом, стена высотой 8 футов весит 8 футов x 16 фунтов / фут 2 = 128 фунтов на линейный фут. На жатку доставлено:

Условия:

живая нагрузка (снег):

50 фунтов на квадратный фут x 14 футов = 700 фунтов на линейный фут

Собственная нагрузка на крышу:

15 фунтов на квадратный фут x 14 футов = 210 фунтов на линейный фут

стена верхнего уровня:

= 128 фунтов на линейный фут

Живая нагрузка 2-го этажа:

30 фунтов на фут x 6 футов = 180 фунтов на линейный фут

Собственная нагрузка 2-го этажа:

10 фунтов на фут x 6 футов = 60 фунтов на линейный фут

общая нагрузка:

= 1278 фунтов на линейный фут

Балки

Пример коньковой балки


Рисунок 5 - На этом рисунке показаны 2 конструктивных элемента: конструкционная коньковая балка и центральная балка. У обоих есть приток площадью 12’0 ″. Нагрузка на фут балки определяется так же, как и для жаток.

Условия коньковой балки

живая нагрузка (снег):

50 фунтов на фут x 12 футов = 600 фунтов на линейный фут

Собственная нагрузка на крышу:

10 фунтов на фут x 12 футов = 120 фунтов на линейный фут

общая нагрузка:

= 720 фунтов на линейный фут

Пример фермы

Центральная балка несет половину нагрузки на пол, нагрузку на перегородку и половину нагрузки на второй этаж.Текущие и статические нагрузки указаны в строительных нормах и правилах. Вес перегородки указан в Стандартах архитектурной графики как 10 фунтов на квадратный фут.

B) Состояние балок первого этажа

Живая нагрузка 1-го этажа:

40 фунтов на фут x 12 футов = 480 фунтов на линейный фут

Статическая нагрузка 1-го этажа:

10 фунтов на фут x 12 футов = 120 фунтов на линейный фут

Перегородка высотой 8 футов:

= 80 фунтов на линейный фут

Живая нагрузка 2-го этажа:

30 фунтов на фут x 12 футов = 360 фунтов на линейный фут

Собственная нагрузка 2-го этажа:

10 фунтов на фут x 12 футов = 120 фунтов на линейный фут

общая нагрузка:

= 1160 фунтов на линейный фут

Резюме

Эти примеры являются типичными для типов расчетов, которые вам необходимо выполнить для определения равномерной нагрузки, которая распределяется на балку или коллектор. Вы должны установить, какую нагрузку принимает каждая прямая опора жатки или балки. Следующим шагом является использование технической литературы любой из компаний, производящих деревянные компоненты, для определения пролета и размера балки. Все они соотносят допустимые пролеты с нагрузкой на фут балки. Списки пролетов основаны на допустимом прогибе, динамической нагрузке и статической нагрузке, которые перечислены в вашей книге строительных норм. В части 2 «Определение размеров инженерных коллекторов и балок» мы сравниваем стоимость и характеристики некоторых деревянных изделий с пиломатериалами.

Все иллюстрации любезно предоставлены Journal of Light Construction.

Лучевые реакции и диаграммы - Приложение к сопротивлению материалов для энергетики

Диаграммы

Цели обучения

В конце этой главы вы должны уметь:

  • Определение реакции свободно опертых, выступающих и консольных балок
  • Рассчитайте и начертите диаграммы силы сдвига и изгибающего момента балок, подверженных сосредоточенным нагрузкам, равномерно распределенным нагрузкам и их комбинациям.

Балки обзор

Балки - это конструкционные элементы для различных инженерных применений, таких как крыши, мосты, механические узлы и т. Д. В целом балки являются тонкими, прямыми, жесткими, изготовлены из изотропных материалов и, что наиболее важно, подвергаются нагрузкам, перпендикулярным их продольной оси. Если вместо перпендикулярных нагрузок тот же элемент конструкции будет подвергаться продольным нагрузкам, он будет называться колонной или стойкой. Если тот же самый элемент будет подвергаться крутящему моменту, он будет называться и рассматриваться как вал.Следовательно, при определении механических или конструктивных компонентов очень важно учитывать способ нагрузки.

Обратите внимание, что когда дело доходит до ориентации, балки могут быть горизонтальными, вертикальными или с любым наклоном между ними (например, погруженные пластины, анализируемые в гидромеханике)… при условии, что нагрузка перпендикулярна их главной оси.

Балочные опоры:

Нагрузки на балку :

Нагрузки Обозначение Примеры Покрытый
Точка, также называемая
  • колеса автомобиля
  • столбцов
  • человек на трамплине
Есть
Равномерное распределенное
  • вес балки
  • Снеговая нагрузка на ферму крыши
Есть
Переменная Распределенная
  • гидростатическая нагрузка на подводную поверхность
  • свая из заполнителя
  • Балка переменного сечения
Есть
Концентрированные моменты

Типы балок:

Решение для лучевых реакций

При решении для реакций рекомендуются следующие шаги:

  1. Нарисуйте диаграмму тела без балки
  2. Заменить равномерно распределенную нагрузку (если есть) эквивалентной точечной нагрузкой
  3. Решить ΣM A = 0 (сумма моментов относительно опоры A). Это даст вам R B (реакция на поддержке B).
  4. Решите ΣM B = 0. Это даст вам R A .
  5. Используя R A и R B , найденный на шагах 3 и 4, проверьте, удовлетворяется ли ΣV = 0 (сумма всех вертикальных сил).
    1. Обратите внимание, что шаги 4 и 5 можно поменять местами.
    2. Для консольной балки используйте ΣV = 0, чтобы найти вертикальную реакцию на стене, и ΣM wall = 0, чтобы найти моментную реакцию на стене. Другого уравнения для подтверждения ваших результатов нет.

Диаграммы поперечных сил и изгибающих моментов

Обратите внимание:

«Сдвиговые силы - это внутренние силы, развивающиеся в материале балки для уравновешивания приложенных извне сил для обеспечения равновесия всех частей балки.

Изгибающие моменты - это внутренние моменты, возникающие в материале балки для уравновешивания тенденции внешних сил вызывать вращение любой части балки ». [3]

Сила сдвига в любом сечении балки может быть найдена путем суммирования всех вертикальных сил слева или справа от рассматриваемого сечения.

Точно так же изгибающий момент в любом сечении балки может быть найден путем сложения моментов слева или справа от рассматриваемого сечения. Опорной точкой момента является рассматриваемое местоположение.

По соглашению внутренние сдвигающие силы, действующие вниз, считаются положительными. Они противодействуют восходящим внешним силам. Следовательно, при представлении поперечных сил вы можете нарисовать их в направлении внешних сил. Это визуально проще, чем следовать условным обозначениям.

Моменты по часовой стрелке обычно считаются отрицательными, а моменты против часовой стрелки - положительными. При представлении изменения изгибающего момента обратитесь к следующей таблице, в которой показаны качественные кривые изгибающего момента в зависимости от формы графиков поперечной силы.

.

При построении диаграмм поперечных сил и изгибающих моментов важны условные обозначения, но решающее значение имеет согласованность. Например, рассмотрим простую балку, нагруженную точечной нагрузкой, приложенной к нагрузке UD.Запуск диаграмм на опоре A, глядя на страницу, выдаст следующее:

Теперь переверните луч горизонтально на 180 ° (или измените точку наблюдения, глядя на луч с противоположной стороны) и начертите диаграммы, начиная с той же точки A. Диаграммы будут выглядеть следующим образом:

Обратите внимание, что, хотя диаграммы поперечных сил выглядят как зеркальные изображения (перевернутые по горизонтали), на диаграмму изгибающего момента это не влияет. Кроме того, наиболее важный результат этого анализа показывает, что значения максимальной силы сдвига и изгибающего момента всегда будут одинаковыми.

Схемы КПП

При построении схем балок необходимо учитывать следующее:

Диаграммы поперечных сил:

  • На концах балки с простой опорой поперечная сила равна нулю.
  • У стены консольной балки поперечная сила равна вертикальной реакции на стене. На свободном конце балки поперечная сила равна нулю.
  • На любом сегменте балки, где не действуют никакие нагрузки, поперечная сила остается постоянной (горизонтальная линия).
  • Точечная нагрузка или реакция на диаграмме поперечных сил приводит к резкому изменению диаграммы в направлении приложенной нагрузки.
  • Равномерно распределенная нагрузка, действующая на балку, представляет собой прямолинейную поперечную силу с отрицательным или положительным наклоном, равную нагрузке на единицу длины.

Диаграмма изгибающих моментов:

  • На концах свободно опертой балки изгибающие моменты равны нулю.
  • У стенки консольной балки изгибающий момент равен моменту реакции.На свободном конце изгибающий момент равен нулю.
  • В том месте, где поперечная сила пересекает нулевую ось, соответствующий изгибающий момент имеет максимальное значение.
  • Форма кривой изгибающего момента между двумя точками балки показана в двух приведенных выше таблицах.
  • Изменение изгибающего момента между двумя точками балки равно площади под диаграммой поперечных сил между теми же двумя точками.

Приведенные выше рекомендации помогут вам в построении диаграмм направленности; они также служат проверкой.

Назначенные задачи

Рассчитайте реакции балки и нарисуйте диаграммы поперечной силы и изгибающего момента для следующих балок.

При решении диаграмм пучка в классе и дома вы можете проверить свои ответы с помощью бесплатного онлайн-калькулятора пучка: SkyCiv Cloud Engineering Software

Задача 1: Укажите максимальные значения поперечной силы и изгибающего момента.

Задача 2: Укажите максимальные значения поперечной силы и изгибающего момента.

Проблема 3: Балка длиной 24 метра просто опирается на 3 метра с каждого конца. Балка несет точечную нагрузку 18 кН на левом конце и 22 кН на правом конце балки. Балка весит 400 кг / м. Нарисуйте схемы балок и определите место на балке, где изгибающий момент равен нулю.

Задача 4: Простая свисающая балка длиной 112 футов выступает над левой опорой на 14 футов. Балка несет сосредоточенную нагрузку в 90 тысяч фунтов на 12 футов от правого конца и равномерно распределенную нагрузку в 12 тысяч фунтов / фут на 40 футов. раздел с левого конца.Нарисуйте схемы балок и определите поперечную силу и изгибающий момент на участке в 50 футах от левого конца.

Проблема 5: Предложите улучшение для этой главы.

Как рассчитать силы, действующие на балки

Уравнения пучка - важная часть механики и отличный способ отточить свои математические и физические навыки. Способность рассчитывать силы, действующие на балки, является фундаментальной в строительстве, научном образовании и даже в элементарных домашних улучшениях, таких как строительные полки.

Уравнения пучка также позволяют вычислить неизвестные вещи, например, сколько весит ящик или длина балки, переставляя уравнения. Это способ сэкономить время и силы, если вам нужно узнать вес фиксированного объекта, не беспокоясь о том, чтобы демонтировать то, к чему он прикреплен.

    Нарисуйте диаграмму, включающую силы, действующие на балку, и длину балки. Это помогает визуализировать проблему и позволяет собрать всю предоставленную информацию в одном изображении.В учебниках это часто называют диаграммой свободного тела.

    Используйте шкалу, чтобы определить силу по часовой стрелке, действующую на балку (если есть), измеренную в Ньютонах (Н). Если сила находится слева от точки балансировки, то действие вверх (подъем) вызывает момент по часовой стрелке. Если действовать справа от точки балансировки, то направленная вниз сила (сила тяжести) вызывает момент по часовой стрелке. Обозначьте силу по часовой стрелке «Fc».

    С помощью линейки измерьте горизонтальное расстояние в метрах (м) между силой по часовой стрелке и центром точки балансировки, если таковая имеется. Обозначьте это расстояние «постоянным током».

    Используйте шкалу для определения силы против часовой стрелки, измеряемой в Ньютонах (Н), действующей на балку, если таковая имеется. Если сила находится слева от точки балансировки, действие вниз (сила тяжести) вызывает момент против часовой стрелки. При действии справа от точки балансировки восходящая сила (подъем) вызывает момент против часовой стрелки. Обозначьте силу по часовой стрелке «Fa».

    С помощью линейки измерьте горизонтальное расстояние в метрах (м) между силой против часовой стрелки и центром точки баланса, если таковая имеется.Обозначьте это расстояние «да». К настоящему времени должно было возникнуть одно неизвестное: «Fc», «dc», «Fa» или «da».

    Вычислите моменты по часовой стрелке (Mc), используя формулу для момента:

    Момент по часовой стрелке равен силе по часовой стрелке, умноженной на горизонтальное расстояние от точки балансировки.

    Рассчитайте моменты против часовой стрелки (Ma) по формуле для момента:

    Момент против часовой стрелки равен силе против часовой стрелки, умноженной на горизонтальное расстояние от точки балансировки.

    Пусть моменты по часовой стрелке равны моментам против часовой стрелки, чтобы найти значения, когда они находятся в равновесии:

    Это известно в физике как равновесие.

    Сделайте неизвестную силу или расстояние предметом исследования, изменив формулу, чтобы изолировать неизвестное на одной стороне уравнения. Это делается путем деления другой части уравнения на известную силу или расстояние.

    Например, если мы хотим найти постоянный ток, разделите уравнение на Fc:

    Введите известные числа в уравнение и решите уравнение относительно неизвестного.Решенное уравнение дает силу или расстояние, необходимое для уравновешивания двух сторон балки.

    Ответ должен быть больше или равен этому числу, если мы хотим поднять объект.

Мы не можем найти эту страницу

(* {{l10n_strings.REQUIRED_FIELD}})

{{l10n_strings.CREATE_NEW_COLLECTION}} *

{{l10n_strings. ADD_COLLECTION_DESCRIPTION}}

{{l10n_strings.COLLECTION_DESCRIPTION}} {{addToCollection.description.length}} / 500 {{l10n_strings.TAGS}} {{$ item}} {{l10n_strings.PRODUCTS}} {{l10n_strings.DRAG_TEXT}}

{{l10n_strings.DRAG_TEXT_HELP}}

{{l10n_strings.LANGUAGE}} {{$ select.selected.display}}

{{article. content_lang.display}}

{{l10n_strings.АВТОР}}

{{l10n_strings.AUTHOR_TOOLTIP_TEXT}}

{{$ select.selected.display}} {{l10n_strings.CREATE_AND_ADD_TO_COLLECTION_MODAL_BUTTON}} {{l10n_strings.CREATE_A_COLLECTION_ERROR}}

Как делать расчеты балочной нагрузки

Достаточно взглянуть вокруг, чтобы понять тот простой, но интересный факт, что каждый объект, живой или неживой, постоянно прикладывает определенную нагрузку к определенной базе, а также одновременно подвергается воздействию подвергается воздействию равной и противоположной силы со стороны поддерживаемого основания.

Автомобиль, припаркованный над местом, оказывает на землю силу или предлагает нагрузку на землю, которая может быть равна его весу; однако земля также оказывает на машину равную, но противоположную силу, так что она остается на месте в целости и сохранности.Поскольку автомобиль удерживается в одном постоянном положении, это означает, что две силы должны быть равны и действовать в противоположных направлениях.

В основном следующие две силы обычно действуют на любой объект, который в основном составляет нагрузку:

  • Вес объекта, действующий по направлению к земле
  • Реакция земли или основания, действующая вверх над объектом

Перед тем, как мы Если перейти к деталям расчета нагрузки на балку, важно сначала узнать о типах нагрузок, которые могут действовать на балку, поддерживаемую на ее концах.

Нагрузку можно разделить на следующие важные типы:

  • Точечная нагрузка, резко ограниченная одной точкой,
  • Равномерно или равномерно распределенная нагрузка и,
  • Равномерно изменяющаяся нагрузка.

Давайте разберемся с ними по очереди.

Точечная нагрузка: Нагрузка или груз, воздействующий на точечную область, называется точечной нагрузкой . Однако математически точечная нагрузка не представляется возможной просто потому, что любая нагрузка должна иметь определенную область воздействия и не может балансировать по точке, но если площадь удара слишком мала по сравнению с длиной балки, может приниматься как определено.

Равномерно распределенная нагрузка: как следует из названия, нагрузка, равномерно выровненная по всей балке, называется равномерно распределенной нагрузкой .

Равномерно изменяющаяся нагрузка: Нагрузки, распределенные по балке, которые создают равномерно увеличивающийся градиент нагрузки по всей балке от конца до конца, называется равномерно изменяющейся нагрузкой .

Балка может подвергаться одной из вышеуказанных нагрузок или их сочетаниям.

Реакции балки

Следующая простая иллюстрация проведет нас через формулы, относящиеся к расчету нагрузки на балку или, точнее, реакции балки:

Ссылаясь на диаграмму рядом, давайте рассмотрим балку, поддерживаемую на ее концах (слева и справа). справа), обозначаемые буквами A и B соответственно.

Пусть на балку действуют точечные нагрузки в положениях, обозначенных как W1, W2 и W3.

Также пусть,

RA = Реакция на конце A балки.

RB = Реакция на конце B балки.

Итак, в первую очередь существует пара сил (эффект поворота), которые действуют на концы балки A и B, а именно. по часовой стрелке и против часовой стрелки момент силы.

Поскольку момент силы на поддерживаемую балку равен произведению Силы (здесь вес) и расстояния до опоры или оси поворота, общий момент по часовой стрелке, действующий в точке A, может быть задан как:

W1.a + W2.b + W3.c,

Кроме того, против часовой стрелки момент силы, действующей на точку B, должен быть:

RB.l

Теперь, поскольку балка находится в равновесии, подразумевается, что указанные выше два момента силы должны быть равны по величине, поэтому приравнивание двух выражений дает:

W1. a + W2.b + W3.c = RB.l

RB = W1.a + W2.b + W3.c / l

Равновесие с балкой также подразумевает, что:

RA + RB = W1.a + W2.b + W3.c

RA = (W1.a + W2.b + W3.c) - RB

Теперь, согласно условиям равновесия, алгебраическая сумма всех горизонтальных компонентов в приведенном выше выражении становится несущественной и может быть обнулена (ƩH = 0.)

Следовательно, Окончательное уравнение принимает вид

RA = (W1 + W2 + W3) - RB

Вышеупомянутая формула может использоваться для определения реакции нагруженной балки на ее концевые опоры.

Расчет поперечной силы и изгибающего момента

Двумя важными параметрами, также участвующими в расчетах нагрузки на балку, являются поперечная сила (SF) и изгибающий момент (BM).

Выведем их с помощью следующей простой иллюстрации:

Ссылаясь на рисунок рядом, рассмотрим балку, нагруженную равномерно распределенной нагрузкой Вт на единицу длины. Также рассмотрим определенное сечение балки RS длиной δx на расстоянии x от левой опоры балки.

Нагрузка, действующая на сечение RS балки, будет равна Вт. δx ( момент Силы).

Теперь предположим, что поперечная сила в точке R = F,

Тогда в точке S это будет F + δF .

Также, если изгибающий момент в R = M , то в S он становится M + δM.

Поскольку балка находится в равновесии, задействованный момент также должен подчиняться законам равновесия, поэтому приравняв два неуравновешенных выражения в S, мы получаем:

_F + W._ δx = F + δF

Или δF / δx = W,

Приведенные выше выражения показывают, что скорость изменения поперечной силы равна давлению нагрузки или интенсивности.

Точно так же моменты в S могут быть приравнены как:

M - F.δx - Wδx2 / 2 = M + δM

Или δM = - F.δx, (игнорируя тривиальную величину δx2)

Получаем , δM / δx = - F

Приведенное выше соотношение показывает, что скорость изменения изгибающего момента равна поперечной силе сечения RS.

Данные (формула реакции, соотношение силы сдвига и изгибающего момента), описанные в этой статье, могут быть использованы при расчетах нагрузки на балку для дальнейшего определения качества и типа материала, который будет использоваться для безопасной нагрузки на балку.

Измерение изгибающего момента консольных балок

Балка, закрепленная на одном конце и свободно свисающая на другом, называется консольной балкой.

Глядя на рисунок, показанный в этом разделе, рассмотрим консольную балку длиной l и несущую нагрузку W над своим свободным концом _._ Осмотр сечения _X_, которое находится на расстоянии _x_ от свободного конца мы находим, что поперечная сила равна общей неуравновешенной силе (весу), действующей вертикально на балку, т.е.например:

Fx = –W (знак минус означает, что правая сторона идет вниз)

И изгибающий момент может быть выражен как:

Mx = –Wx (знак минус указывает противоположный изгиб)

Сила сдвига постоянна на всем сечении AB и равна –W .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *