Характеристика 45 стали: Конструкционная сталь характеристики, свойства

alexxlab | 02.04.1976 | 0 | Разное

Содержание

характеристики, плотность, твёрдость. Сталь 45 марки и её применение

Для любого сплава характерны свои характеристики, химический состав элементов, набор заменителей, функциональность, назначение и т.д. Что такое сталь 45? Прежде всего, это сплав, в котором содержится 0,45% углерода, в то время как доля остальных примесей крайне незначительна. Её основными заменителями считают сталь 40х и 50, которые также отличаются высокой прочностью, надежностью и износоустойчивостью.

Сталь 45: химический состав

Процентное соотношение химических элементов, входящих в состав стали марки 45:

  • Fe – около 97%
  • C – 0,42-0,5%
  • Mn – 0,5-0,8%
  • Si – 0,17-0,37%
  • Ni – не больше 0,25%
  • Cr – не больше 0,25%
  • Cu – не больше 0,25%
  • As – не больше 0,08%
  • S – не больше 0,04%
  • P – не больше 0,035%

Сталь марки 45: ГОСТы


ГОСТы на прокат из конструкционной углеродистой качественной стали 45:

  • ГОСТ 19903-74, 1577-93 – лист толстый
  • ГОСТ 16523-97 – лист тонкий
  • ГОСТ 8733-74, 8731-74, 8734-75, 21729-76, 8732-78 – труба
  • ГОСТ 2284-79 – лента
  • ГОСТ 5663-79, 17305-91 – проволока
  • ГОСТ 7417-75, 8559-75, 8560-78, 1050-88 – калиброванный пруток
  • ГОСТ 14955-77 – шлифованный пруток и серебрянка
  • ГОСТ 82-70, 1577-93, 103-2006 – полоса
  • ГОСТ 8479-70, 1133-71 – кованые заготовки

Сталь 45: характеристики

Этот углеродистый качественный сплав с легкостью переносит температурные испытания, производимые в диапазоне 200-600°C. При удельном весе в 7826 кг/м3, этот металл обладает высокой твердостью – HB 10-1=170МПа.

Плотность стали 45 по ГОСТ 1050-88 составляет 7826-7595 кг/м3 в диапазоне 20-800оС.

Углеродистая качественная сталь 45, твердость по Бринеллю которой составляет 170МПа, имеет модуль упругости в E 10-5 = 2МПа (при 20оС) и предел прочности 245МПа.

Остальные физические и механические характеристики стали 45 представлены ниже:

Сталь марки 45: применение

Сталь 45 марки широко используется в промышленности, в частности, она идет на изготовление валов (распределительных и коленчатых), шестерней, блиндажей, шпинделей, кулачков, цилиндров и т.п. 45-й металл позволяет получать нормализованные, улучшаемые поверхности, для которых характерна повышенная прочность. При необходимости на порядок улучшить характеристики готовых изделий технологи применяют металл марки 45, легированный хромом – 45х (доля хрома 0,8-1,1%), или литейную сталь 45л.

Сталь 45 считается материалом трудносвариваемым, однако ему не свойственна отпускная хрупкость. Это достаточно весомый фактор при создании конструкций сложных форм и конфигураций. Сварка данного металла производится 2 способами: КТС и РДС.

показатель высокой прочности и технические характеристики

Сталь — это деформируемый сплав железа (подвергающийся ковке) с углеродом и другими элементами. Ее получают из состава, в котором есть место для чугуна и стального лома, обрабатывают в мартеновских печах, кислородных конвертерах и электрических печках. Если в сплаве железа более 2,14% углерода, тогда это уже чугун.

Классификация стали

На рынке 99% всей стали представлен материал конструкционный в широком смысле. К этой группе относятся стали для возведения строительных сооружений, изготовления деталей машин, упругих элементов, инструментов, а также для особых условий работы, имеющие определенные показатели, например, теплостойкие, нержавеющие и другие.

Главными качествами материала являются:

  • Прочность, которая характеризуется способностью к выдерживанию достаточного напряжения.
  • Пластичность, эта характеристика позволяет выдерживать деформации без ущерба разрушения как при производстве конструкций, так и в точках перегрузок при их работе.
  • Вязкость способствует поглощению работы внешних сил, препятствует распространению трещин.
  • Жаропрочность и холодостойкость.
  • Упругость и твердость.

Сталь и сплавы классифицируют:

  • По составу химическому, структурному.
  • По качеству. На данный показатель влияет способ производства и содержание вредных примесей.
  • По степени раскисления и затвердеванию металла в изложнице.
  • По применению.

Химический состав

В зависимости от содержания углерода делят на группы:

  • углерода менее 0,3%С — малоуглеродистые.
  • Среднеуглеродистые, когда его от 0,3 до 0,7% С.
  • Более 07 %С — высокоуглеродистые.

Чтобы улучшить технологические свойства материала сталь легируют. Что это значит? Кроме обычных примесей в ее состав добавляют в определенных сочетаниях легирующие элементы. Обычно лучшие свойства появляются, когда легируют комплексно.

В легированных сталях классификация происходит благодаря суммарному проценту содержащихся в ней примесей:

  • Низколегированные, в которых менее 2,5%.
  • Среднелегированные — от 2,5% до 10%.
  • Высоколегированные — выше 10%.

Структурный состав

Легированные стали подразделяются на виды по структурному анализу:

  • В оттоженном виде — ледебуритный, ферритный, доэвтектоидный, заэвтектоидный, аустенитный.
  • В нормализованном виде — аутенитный, мартенситный, перлитный.

Перлитный класс характеризуется низким содержанием легирующих элементов. К нему относятся легированные и углеродистые стали. Мартенситный включает в себя стали с более высоким процентом легирующих веществ. В аутенитный класс входят материалы с высоким значением легирующих элементов.

Содержание примесей

По способу производства и содержании примесей данный материал делится на 4 группы:

  1. Обыкновенного качества. По химическому составу являются углеродистыми. Они выплавляются посредством кислорода или в мартеновских печах. Данные стали являются недорогими и уступают по своим свойствам другим классам.
  2. Качественные. По химическому свойству являются углеродистыми или легированными. Так же, как и предыдущий тип, выплавляются в конвертерах или в мартеновских печках, при этом соблюдаются более строгие требования к составу шихты, работам по плавке и разливке.
  3. Высококачественные. Данный тип выплавляется, как правило, в электрических печах. Очень высокого качества сталь изготавливается благодаря электропечам с электрошлаковым переплавом. Применяются также другие совершенные методы, направленные на повышение чистоты по неметаллическим включениям (сера и фосфор).
  4. Благодаря электрошлаковому переплаву, который эффективно очищает от сульфидов и оксидов, создаются особовысококачественные стали. Такие стали бывают только легированными. Они проходят обработку в электропечах, к ним применяются специальные методы электрометаллургии.

Применение

Шарикоподшипниковые хромистые стали применяются для изготовления подшипников. Этот вид зарекомендовал себя, как высокопрочный, твердый и контактно-выносливый материал.

Упругой деформацией обладают некоторые виды стали, поэтому они применяются для пружин, рессор и других изделий. Многие из них должны выдерживать циклические нагрузки. Поэтому основными требованиями к данным видам стали являются высокие значения упругости, текучести, выносливости, также необходима пластичность и сопротивление хрупкому разрушению.

Высокопрочные стали обладают прочностью при необходимой пластичности, малой чувствительностью к надрезам, низким порогам хладноломкости, отличной свариваемостью, высоким показателям сопротивления хрупкому разрушению.

Сталь 45

Этот сплав стали отличается от других набором особых характеристик, которые присущи только этой марке. Она отличается применением и высокой функциональностью, уникальным составом химических соединений, совокупностью литейных и других производственных параметров.

Применение

Сталь под номером 45 изготавливается в соответствии со всеми требованиями ГОСТа. Из нее делают валы всех видов, бандажи, шпиндели, цилиндры различных видов, кулачки разнообразной формы. По сути, применяется для конструкций и устройств, функциональным назначением которых является устойчивость к огромным нагрузкам, где требуется демонстрировать повышенные показатели износостойкости, прочности, нечувствительности к коррозии.

В составе стали марки 45 в соответствии с ГОСТ находятся такие элементы, как фосфор, мышьяк, медь, никель, марганец и другие вещества. Данная сталь обладает большим набором механических характеристик. Поэтому она способна вынести практически все климатические и температурные колебания. Испытывают данный вид стали при температурном интервале от 200 до 600 градусов.

Технические характеристики

Данная сталь относится к тем материалам, которые трудно поддаются сварке, однако, при этом у нее отсутствует отпускная способность. Эта ее особенность часто очень хорошо влияет на изготовление сложных форм и деталей. Благодаря характеристикам данной стали, ударная вязкость изделий из нее всецело зависит от толщины взятого листа, причем наибольшим значением будет обладать самый толстый исходник. Но, даже несмотря на данный параметр, можно с уверенностью сказать, что практически любая конструкция, изготовленная из стали этой марки, выдержит практически любые, в том числе и самые интенсивные воздействия.

Это стало возможным благодаря применяемым способам обработки, а также производственному процессу, который разработан в соответствии с ГОСТ. Безусловно, в мире еще не создали материалы, обладающие бесконечной выносливостью к различным воздействиям, поэтому данный металл в этом смысле не исключение. Но благодаря высоким свойствам сырья, из которых производят материал, у него великолепные показатели.

Оцените статью: Поделитесь с друзьями!

Расшифровка, характеристики, ГОСТы, закалка, прокат

45

Механические свойства при комнатной температуре

НД

Режим термообработки

Сечение,

мм

σ0,2,

Н/мм2

σВ,

Н/мм2

δ,

%

Ψ,

%

KCU,

Дж/см2

HRC

НВ

Операция

t, ºС

Охлаждающая

среда

не менее

ГОСТ

8479–70

Нормализация

Отпуск

830–860

550–600

Воздух

Воздух или

печь

 До 100

100–300

300–500

500–800

315

275

245

245

570

530

470

470

17

17

17

15

38

38

35

30

39

34

34

34

167–207

156–197

143–179

143–179

Закалка

Отпуск

820–850

550–650

Вода

Воздух

 До 100

101–300

301–500

395

345

315

615

590

570

17

17

12

45

40

30

59

54

29

187–229

174–217

167–207

ГОСТ

8731–74

Термическая

обработка

ø  20–820

s 2,5–36

320

590

14

≤ 207

ГОСТ

8733–74

Термическая

обработка

ø 5–250

s 0,3–24

320

590

14

≤ 207

ГОСТ

10702–78

Термическая

обработка

5–48

590

40

≤ 207

ГОСТ

16523–

97

Термическая обработка

Горячекатаный лист

До 2,0

Свыше

2,0

490–720

490–720

12

13

Холоднокатаный лист

До 2,0

Свыше

2,0

490–720

490–720

13

14

ТУ 108.

11.890–87

Термическая  обработка

До 800

275

530

13

30

29

156–197

ДЦ

Поверхностная закалка с нагревом ТВЧ и низкий отпуск

Вода

Не определяются

Повер-

хности

40–56

Закалка3

Отпуск

830–850

160–180

Масло

Воздух

До 15

650

900

15

40

30

30–40

Закалка

Отпуск

830–850

180–200

Вода

Воздух

До 20

950

1200

6

22

40–50

1 Поперечные образцы.

2 Работа удара, Дж.

3 Режим для мелких тонкостенных деталей сложной конфигурации.

Назначение. Вал-шестерни, коленчатые и распределительные валы, шестерни, шпиндели, бандажи, плунжеры, стойки, колонны, оправки, рычаги, траверсы, хвостовики, цилиндры, кулачки, штуцеры, шайбы, вилки кронштейны, установочные винты, пальцы, втулки, арматура, детали насосов, тяги, штыри, шпонки, храповики, стропы и другие детали, крепеж трубопроводов ТЭС, АЭС, паровых турбин.

Предел

выносливости,

Н/мм2

Термообработка

Ударная вязкость, KCU, Дж/см2,

при t, ºС

Термообработка

σ-1

τ-1

+ 20

– 20

– 40

– 60

– 80

– 100

280

170

Нормализация с 850 ºС,

отпуск при 550–650 ºС.

90–94

61

61

49

40

12

Нормализация и отпуск

Технологические характеристики

Ковка

Охлаждение поковок, изготовленных

Вид полуфабриката

Температурный

интервал ковки,  ºС

из слитков

из заготовок

Размер сечения, мм

Условия охлаждения

Размер сечения, мм

Условия охлаждения

Слиток

Заготовка

1250–780

1250–750

Поковки всех размеров:

ответственного назначения

Нормализация, два переохлаждения, отпуск

До 800

На воздухе

Остальные поковки:

а) до 400,

б) 401–800,

в) > 800

а) на воздухе,

б) отжиг низкотемпературный,

в) отжиг низкотемпературный, одно переохлаждение

Свариваемость

Обрабатываемость резанием

Флокеночувствительность

Ограниченно свариваемая.

Способы сварки: РД, РАД, АФ, МП и ЭШ.

Рекомендуются подогрев и последующая термообработка.

В горячекатаном состоянии при  170–179 НВ и

σВ = 650 Н/мм2

К = 1,0 (твердый сплав),

К = 1,0 (быстрорежущая сталь)

Мало чувствительна

Склонность к отпускной хрупкости

Не склонна

Сталь 45 – характеристика, химический состав, свойства, твердость

Доска объявлений

Сталь 45 – характеристика, химический состав, свойства, твердость

Сталь 45

Общие сведения

Заменитель

стали: 40Х, 50, 50Г2

Вид поставки

Сортовой прокат, в том числе фасонный: ГОСТ 1050-74, ГОСТ 2590-71, ГОСТ 2591-71, ГОСТ 2879-69, ГОСТ 8509-86, ГОСТ 8510-86, ГОСТ 8239-72, ГОСТ 8240-72, ГОСТ 10702-78. Калиброванный пруток ГОСТ 1050-74, ГОСТ 7414-75, ГОСТ 8559-75, ГОСТ 8560-78, ГОСТ 10702-78. Лист толстый ГОСТ 1577-81, ГОСТ 19903-74. Лист тонкий ГОСТ 16523-70. Лента ГОСТ 2284-79. Полоса ГОСТ 1577-81, ГОСТ 103-76, ГОСТ 82-70. Проволока ГОСТ 17305-71, ГОСТ 5663-79. Поковки и кованые заготовки ГОСТ 8479-70, ГОСТ 1131-71. Трубы ГОСТ 8732-78, ГОСТ 8733-87, ГОСТ 8734-75, ГОСТ 8731-87, ГОСТ 21729-78.

Назначение

Вал-шестерни, коленчатые и распределительные валы, шестерни, шпиндели, бандажи, цилиндры, кулачки и другие нормализованные, улучшаемые и подвергаемые поверхностнй термообработке детали, от которых требуется повышенная прочность.

Химический состав

Химический элемент

%

Кремний (Si)0.17-0.37
Медь (Cu), не более0.25
Мышьяк (As), не более0.08
Марганец (Mn)0.50-0.80
Никель (Ni), не более0.25
Фосфор (P), не более0.035
Хром (Cr), не более0.25
Сера (S), не более0.04

Механические свойства

Механические свойства при повышенных температурах

t испытания, °Cs0,2, МПаsB, МПаd5, %d, %y, %KCU, Дж/м2

Нормализация

200 340 690  10 36 64 
300 255 710  22 44 66 
400 225 560  21 65 55 
500 175 370  23 67 39 
600 78 215  33 90 59 

Образец диаметром 6 мм и длиной 30 мм, кованый и нормализованный. Скорость деформирования 16 мм/мин. Скорость деформации 0,009 1/с.

700 140 170 43  96  
800 64 110 58  98  
900 54 76 62  100  
1000 34 50 72  100  
1100 22 34 81  100  
1200 15 27 90  100  

Механические свойства проката

Термообработка, состояние поставкиСечение, ммsB, МПаd5, %d4, %y, %
Сталь горячекатаная, кованая, калиброванная и серебрянка 2-й категории после нормализации 25 600 16  40 
Сталь калиброванная 5-й категории после нагартовки  640  30 
Сталь калиброванная и калиброванная со специальной отделкой после отпуска или отжига  <590   40 
Листы нормализованные и горячекатаные  80 590 18   
Полосы нормализованные или горячекатаные  6-25 600 16  40 
Лист горячекатаный <2 550-690  14  
Лист горячекатаный 2-3,9 550-690  15  
Лист холоднокатаный <2 550-690  15  
Лист холоднокатаный 2-3,9 550-690  16  

Механические свойства поковок

Сечение, ммs0,2, МПаsB, МПаd5, %y, %HB

Нормализация

100-300 245 470 19 42 143-179 
300-500 245 470 17 35 143-179 
500-800 245 470 15 30 143-179 
<100 275 530 20 44 156-197 
100-300 275 530 17 34 156-197 

Закалка. Отпуск

300-500 275 530 15 29 156-197 

Нормализация. Закалка. Отпуск.

<100 315 570 17 39 167-207 
100-300 315 570 14 34 167-207 
300-500 315 570 12 29 167-207 
<100 345 590 18 59 174-217 
100-300 345 590 17 54 174-217 
<100 395 620 17 59 187-229 

Механические свойства в зависимости от температуры отпуска

t отпуска, °Сs0,2, МПаsB, МПаd5, %y, %KCU, Дж/м2HB

Закалка 850 °С, вода. Образцы диаметром 15 мм

450 830 980 10 40 59  
500 730 830 12 45 78  
550 640 780 16 50 98  
600 590 730 25 55 118  

Закалка 840 °С, вода. Диаметр заготовки 60 мм

400 520-590 730-840 12-14 46-50 50-70 202-234 
500 470-520 680-770 14-16 52-58 60-90 185-210 
600 410-440 610-680 18-20 61-64 90-120 168-190 

Механические свойства в зависимости от сечения

Сечение, ммs0,2, МПаsB, МПаd5, %y, %KCU, Дж/м2

Закалка 850 °С, отпуск 550 °С. Образцы вырезались из центра заготовок.

15 640 780 16 50 98 
30 540 730 15 45 78 
75 440 690 14 40 59 
100 440 690 13 40 49 

Технологические свойства

Температура ковки
Начала 1250, конца 700. Сечения до 400 мм охлаждаются на воздухе.
Свариваемость
Трудносвариваемая. Способы сварки: РДС и КТС. Необходим подогрев и последующая термообработка.
Обрабатываемость резанием
В горячекатаном состоянии при НВ 170-179 и sB = 640 МПа Ku тв.спл. = 1, Ku б.ст. = 1.
Склонность к отпускной способности
Не склонна.
Флокеночувствительность
Малочувствительна.

Температура критических точек

Критическая точка

°С

Ac1

730

Ac3

755

Ar3

690

Ar1

780

Mn

350

Ударная вязкость

Ударная вязкость, KCU, Дж/см2

Состояние поставки, термообработка

+20

-20

-40

-60

Пруток диаметром 25 мм. Горячекатаное состояние.

14-15

10-14

5-14

3-8

Пруток диаметром 25 мм. Отжиг

42-47

27-34

27-31

13

Пруток диаметром 25 мм. Нормализация

49-52

37-42

33-37

29

Пруток диаметром 25 мм. Закалка. Отпуск

110-123

72-88

36-95

31-63

Пруток диаметром 120 мм. Горячекатаное состояние

42-47

24-26

15-33

12

Пруток диаметром 120 мм. Отжиг

47-52

32

17-33

9

Пруток диаметром 120 мм. Нормализация

76-80

45-55

49-56

47

Пруток диаметром 120 мм. Закалка. Отпуск

112-164

81

80

70

Предел выносливости

s-1, МПа

t-1, МПа

sB, МПа

s0,2, МПа

 245

 157

 590

 310

 421

 

 880

 680

 231

 

 520

 270

 331

 

 660

 480

Прокаливаемость

Твердость для полос прокаливаемости HRCэ (HRB).

Расстояние от торца, мм / HRC э

 1.5

 3

 4.5

 6

 7.5

 9

 12

 16.5

 24

 30

 50.5-59

 41.5-57

 29-54

 25-42.5

 23-36.5

 22-33

 20-31

 (92)-29

 (88)-26

 (86)-24

Термообработка

Кол-во мартенсита, %

Крит.диам. в воде, мм

Крит.диам. в масле, мм

Закалка 

50 

15-35 

6-12 

Физические свойства

Температура испытания, °С

20 

100 

200 

300 

400 

500 

600 

700 

800 

900 

Модуль нормальной упругости, Е, ГПа

200 

201 

193 

190 

172 

 

 

 

 

 

Модуль упругости при сдвиге кручением G, ГПа

78 

 

 

69 

 

59 

 

 

 

 

Плотность, pn, кг/см3

7826 

7799 

7769 

7735 

7698 

7662 

7625 

7587 

7595 

 

Коэффициент теплопроводности Вт/(м ·°С)

 

48 

47 

44 

41 

39 

36 

31 

27 

26 

Температура испытания, °С

20- 100 

20- 200 

20- 300 

20- 400 

20- 500 

20- 600 

20- 700 

20- 800 

20- 900 

20- 1000 

Коэффициент линейного расширения (a, 10-6 1/°С)

11.9 

12.7 

13.4 

14.1 

14.6 

14.9 

15.2 

 

 

 

Удельная теплоемкость (С, Дж/(кг · °С))

473 

498 

515 

536 

583 

578 

611 

720 

708 

 

 

[ Назад ]

Сталь 45: характеристики по гост и область применения

Сталь 45

Для любого сплава характерны свои характеристики, химический состав элементов, набор заменителей, функциональность, назначение и т.д.

Что такое сталь 45? Прежде всего, это сплав, в котором содержится 0,45% углерода, в то время как доля остальных примесей крайне незначительна.

Её основными заменителями считают сталь 40х и 50, которые также отличаются высокой прочностью, надежностью и износоустойчивостью.

Сталь 45: химический состав

Процентное соотношение химических элементов, входящих в состав стали марки 45:

  • Fe – около 97%
  • C – 0,42-0,5%
  • Mn – 0,5-0,8%
  • Si – 0,17-0,37%
  • Ni – не больше 0,25%
  • Cr – не больше 0,25%
  • Cu – не больше 0,25%
  • As – не больше 0,08%
  • S – не больше 0,04%
  • P – не больше 0,035%

Сталь марки 45: ГОСТы

ГОСТы на прокат из конструкционной углеродистой качественной стали 45:

  • ГОСТ 19903-74, 1577-93 – лист толстый
  • ГОСТ 16523-97 – лист тонкий
  • ГОСТ 8733-74, 8731-74, 8734-75, 21729-76, 8732-78 – труба
  • ГОСТ 2284-79 – лента
  • ГОСТ 5663-79, 17305-91 – проволока
  • ГОСТ 7417-75, 8559-75, 8560-78, 1050-88 – калиброванный пруток
  • ГОСТ 14955-77 – шлифованный пруток и серебрянка
  • ГОСТ 82-70, 1577-93, 103-2006 – полоса
  • ГОСТ 8479-70, 1133-71 – кованые заготовки

Сталь 45: характеристики

Этот углеродистый качественный сплав с легкостью переносит температурные испытания, производимые в диапазоне 200-600°C. При удельном весе в 7826 кг/м3, этот металл обладает высокой твердостью – HB 10-1=170МПа.

Плотность стали 45 по ГОСТ 1050-88 составляет 7826-7595 кг/м3 в диапазоне 20-800оС.

Углеродистая качественная сталь 45, твердость по Бринеллю которой составляет 170МПа, имеет модуль упругости в E 10-5 = 2МПа (при 20оС) и предел прочности 245МПа.

Остальные физические и механические характеристики стали 45 представлены ниже:

Сталь марки 45: применение

Сталь 45 марки широко используется в промышленности, в частности, она идет на изготовление валов (распределительных и коленчатых), шестерней, блиндажей, шпинделей, кулачков, цилиндров и т.п.

45-й металл позволяет получать нормализованные, улучшаемые поверхности, для которых характерна повышенная прочность.

При необходимости на порядок улучшить характеристики готовых изделий технологи применяют металл марки 45, легированный хромом – 45х (доля хрома 0,8-1,1%), или литейную сталь 45л.

Сталь 45 считается материалом трудносвариваемым, однако ему не свойственна отпускная хрупкость. Это достаточно весомый фактор при создании конструкций сложных форм и конфигураций. Сварка данного металла производится 2 способами: КТС и РДС.

Источник: http://fx-commodities.ru/articles/stal-45/

Сталь 45: характеристики, вес, твердость, аналоги марки стали 45

Марка стали: 45.

Класс: сталь конструкционная углеродистая качественная.

Использование в промышленности: вал-шестерни, коленчатые и распределительные валы, шестерни, шпиндели, бандажи, цилиндры, кулачки и другие нормализованные, улучшаемые и подвергаемые поверхностной термообработке детали, от которых требуется повышенная прочность.

Твердость: HB 10 -1 = 170 МПа

Свариваемость материала: трудносвариваемая. Способы сварки: РДС и КТС. Необходим подогрев и последующая термообработка.

Температура ковки, oС: начала 1250, конца 700. Сечения до 400 мм охлаждаются на воздухе.

Флокеночувствительность: малочувствительна.

Склонность к отпускной хрупкости: не склонна.

Вид поставки:

  • Сортововй прокат, в том числе фасонный: ГОСТ 1050-88, ГОСТ 2590-2006, ГОСТ 2591-2006, ГОСТ 2879-2006, ГОСТ 8509-93, ГОСТ 8510-86, ГОСТ 8239-89, ГОСТ 8240-97, ГОСТ 10702-78.
  • Калиброванный пруток ГОСТ 1050-88, ГОСТ 7417-75, ГОСТ 8559-75, ГОСТ 8560-78.
  • Шлифованный пруток и серебрянка ГОСТ 14955-77.
  • Лист толстый ГОСТ 1577-93, ГОСТ 19903-74.
  • Лист тонкий ГОСТ 16523-97.
  • Лента ГОСТ 2284-79.
  • Полоса ГОСТ 103-2006, ГОСТ 1577-93, ГОСТ 82-70.
  • Проволока ГОСТ 17305-91, ГОСТ 5663-79.
  • Поковки и кованые заготовки ГОСТ 8479-70, ГОСТ 1133-71.
  • Трубы ГОСТ 8732-78, ГОСТ 8733-74, ГОСТ 8734-75, ГОСТ 8731-74, ГОСТ 21729-76.
Зарубежные аналоги марки стали 45
США1044, 1045, 1045H, G10420, G10430, G10440, G10450, M1044
Германия1.0503, 1.1191, 1.1193, C45, C45E, C45R, Cf45, Ck45, Cm45, Cq45
ЯпонияS45C, S48C, SWRCh55K, SWRCh58K
Франция1C45, 2C45, AF65, C40E, C45, C45E, C45RR, CC45, XC42h2, XC42h2TS, XC45, XC45h2, XC48, XC48h2
Англия060A47, 080M, 080M46, 1449-50CS, 1449-50HS, 50HS, C45, C45E
Евросоюз1.1191, 2C45, C45, C45E, C45EC, C46
Италия1C45, C43, C45, C45E, C45R, C46
БельгияC45-1, C45-2, C46
ИспанияC45, C45E, C45k, C48k, F.114, F.1140, F.1142
Китай45, 45H, ML45, SM45, ZG310-570, ZGD345-570
Швеция1650, 1672
Болгария45, C45, C45E
ВенгрияA3, C45E
Польша45
РумынияOLC45, OLC45q, OLC45X
Чехия12050, 12056
АвстрияC45SW
Австралия1045, HK1042, K1042
ШвейцарияC45, Ck45
Южная КореяSM45C, SM48C

Свойства стали Ст 45

Приобретая изделия из металла, необходимо знать свойства материала, из которого они изготовлены. То, из стали какой марки произведена продукция, влияет на ее стоимость, прочность, надежность. Это также определяет срок службы и возможную сферу применения.

В данном случае, вы найдете информацию про марку стали 45, которая часто используется для изготовления разнообразных металлических товаров. Она считается конструкционной углеродистой качественной. Чтобы приобрести изделия металлопроката из стали 45, ознакомьтесь с каталогами компании и обратитесь к нашим менеджерам.

Она поставляется в виде сортового и фасонного проката. Вы можете найти обширный список изделий, для которых она применяется. Например, серебрянка, листы металла разной толщины, прутья с разными видами обработки поверхности, поковки и кованые заготовки, длинномерные проволочные изделия, ленты и полоскы, а также трубы.

Сталь 45 и ее характеристики

  • Малая чувствительность к флокенам.
  • Сталь 45 и ее удельный вес: показатель равен 7826 кг/м3.
  • К отпускной хрупкости не склонна.
  • Термообработка: Состояние поставки.
  • Твердость стали 45: показатель равен следующим значениям: HB 10 -1 = 170 МПа

Прочность у данного материала повышенный. Именно поэтому из него изготавливаются предметы, которые можно нормализовать, улучшать, чьи поверхности можно подвергать термической обработке.

В данном материале имеется 0,45 процента углерода. Другие примеси крайне незначительны.

Сталь относится к трудносвариваемым материалам. Чтобы произвести процедуру сварки, требуется сначала подогреть сталь, а затем обработать термически. При ковке температура сначала должна быть 1250 градусов по Цельсию, а в конце снизиться до 700 градусов.

Если изделие имеет сечение, которое меньше или равно 400 миллиметрам, то его можно охлаждать на воздухе.

Сталь 45 и ее аналоги

Такой материал могут заменить следующие три марки стали: 50, 50 Г 2 и 40 Х.

Из них также создаются зубчатые колеса, цилиндры, эксцентрические насадки на вал, валы вращающиеся, коленчатые и распределительные, а также другие товары, применяемые в промышленности.

Марка стали 45 может именоваться по-разному в других странах и иметь несколько аналогов. К примеру, в США ей по свойствам равны 8 марок стали, в Германии – 10, во Франции – 14. В Польше аналог только один и он называется просто 45, в Австрии – C45SW.

Источник: http://atl-met.ru/stal-45

Сталь 45 в наличии

Сталь 45 на складе. Отгрузка проката в день оплаты партиями любого объема.

Описание

Сталь 45 гост выделяется среди подобных изделий рядом следующих характеристик: назначением и функциональностью, химическим составом элементов, возможными заменителями, поставщиками, максимальной температурой работоспособности, литейным и техническим набором характеристик. В основных свойствах выделяют ее основные заменители: стали 40Х, 50 и 50Г2. По своим характеристикам они являются наиболее близкими с похожим набором функций. 

Применение

Сталь 45 гост особо применима для валов, как коленчатых, так и распределительных, шпинделей, бандажей, цилиндров, различных видов и форм кулачков и т.д. Другими словами, для всех приборов и устройств, которые должны обладать максимальной прочностью, надежностью и износоустойчивостью.

По своему химическому составу данная сталь содержит: медь, марганец, мышьяк, никель, фосфор, хром и др. Касаемо своих механических свойств сталь 45 гост выдерживает многие перепады температур, различные климатические изменения и воздействия. Она спокойно проходит температурные испытания от 200 до 600°.

Скорость изменения формы стандартного образца будет достигать 0,009 1/с (6 мм диаметр и 30 мм длина).

Наша продукция из стали 45

Механические свойства при Т=20oС

СортаментsTd5yKCUТермообр.
МПаМПа%%кДж / м2
Трубы, ГОСТ 8731-8758832314
Пруток калиброван., ГОСТ 10702-7859040Отжиг
Прокат, ГОСТ 1050-886003551640Нормализация
Прокат нагартован., ГОСТ 1050-88640630
Прокат отожжен., ГОСТ 1050-885401340
Лента отожжен., ГОСТ 2284-79440-69014
Лента нагартован., ГОСТ 2284-79690-1030
Полоса, ГОСТ 1577-936003551640Нормализация

Источник: http://www.str-invest.ru/pom-snab/sprav-met/marochnik/stal-45/

Сталь ст 45, 20 углеродистая, ст45, ст20

Сталь 45, 20, известные как сталь углеродистая ст45, ст20, произведенные согласно ГОСТ 1050-88, круглого сечения (круг), различных размеров поставляем в Алматы. Производство: Россия. Поставка осуществляется по всем крупным городам РК, возможна доставка до двери Клиента!

В нашей компании Вы сможете купить сталь 45, 20 как оптом, так и в розницу – минимальную поставляемую партию на углеродистую сталь круглого диаметра уточняйте у наших менеджеров. Углеродистая сталь 45, 20 круглого сечения изготавливается согласно следующего установочного документа: ГОСТ 1050 от 1988 года. Каждая отгружаемая партия сопровождается заводским паспортом качества.

Обладают высокой прочностью и прекрасными механическими характеристиками, из-за чего часто применяются как в машиностроении, так и станкостроении. Из стали ст 45 изготавливаются различные ответственные изделия: валы, консоли, оси, штоки, балки, плунжера и другие детали, требующие повышенной прочности от применяемого материала.

Сталь ст 20 – обладает более доступной ценой и применяется для изготовления изделий, для которых необходима твердость поверхности при невысокой прочности сердцевины. Относится к углеродистым сталям.

Химический состав ст45: от 0,5 до 0,8% марганца (Mn), от 0,1 до 0,25% меди (Cu), до 0,25% никеля (Ni), и от 0,25% хрома (Cr), полный химический состав представлен в таблице, расположенной внизу страницы. Наименование ст 45 означает, что данный материал содержит примерно 0,4-0,5% углерода (С).

Благодаря повышенной механической прочности из него производят шестерни, коленвалы различных типов и полуоси. Следует помнить, что круг ст45 является трудно свариваемым, но все же поддается электросварке.

При проведении сварочных работ необходим предварительный подогрев свариваемых конструкций, работа требует хорошей квалификации сварщика. В случае образования трещин в сварном шве необходимо вышлифовать данный участок до чистого металла и только потом переваривать.

Преимуществом углеродистой стали 45 перед стандартным черным металлопрокатом является надежность и прочность, достигаемая легированием. Часто применяется в тех случаях, когда не достаточно механических характеристик стандартной стали, например, марки ст 3. Технические характеристики стали ст 45 представлены в таблице, расположенной внизу страницы.

Нашим менеджерам часто задают вопрос – какая твердость стали 45 по Бринеллю – НВ, либо Роквеллу – HRC. Твердость ст45 в единицах НВ составляет 145-230, в единицах Роквелла HRC твердость может достигать 50 единиц, это зависит от термической обработки материала, подробнее про твердость сплавов читайте в специализированной литературе.

Компания ПромТехСнаб предлагает Вашему вниманию круг ст45 высокого качества, имеются все необходимые паспорта согласно ГОСТ 1050-88. Кроме углеродистых сталей, можем предложить Вам пруток бронзовый, дюралюминиевый, нержавеющий марок AISI 201 (12Х15Г9НД), 304 (08х18н10), 321 (12х18н10т).

Сталь ст 20, описание

Наименование данного материала – сталь 20 означает, что данная марка содержит порядка 0,17-0,24% углерода. Дополнительно сталь марки ст20 содержит в своем составе примерно 0,35-0,65% марганца и 0,1-0,25% хрома, что определяет хорошие механические свойства.

Из легирующих добавок в составе стали 20 можно отметить менее 0,25% меди и никеля, также положительно влияющих на механические и физические свойства ст20. По сравнению с маркой ст45, обладает более доступной ценой. Близкими по составу к данной марке являются марки 35 и 45, можно отметить 40х, содержащую в своем составе повышенную концентрацию хрома.

Все указанные марки производятся в России и поставляются нашей компанией. Часто возникает вопрос о температурном диапазоне ст20 и ст45. Рекомендуемая температура эксплуатации составляет от -20 до +250 градусов Цельсия. При превышении данного диапазона в верхнюю или нижнюю сторону, в стали начинаются структурные изменения, которые приводят к падению эксплуатационных характеристик.

Например при достижении температуры 690 градусов в стали ст 45 начинается процесс изменения кристаллической решетки – переход перлита в аустенит при нагревании и наоборот (точка Чернова). Данны температурный диапазон условен, за более точной информацией Вы можете обратиться к инженерам, ГОСТ 1050-88 либо другим нормативным документам.

Из эксплуатационных свойств можно отметить хорошую свариваемость данной марки. Положительным свойством является малая вероятность образования флокенов в структуре материала, что благоприятно сказывается на прочности изготавливаемых из ст20 изделий. Можно сказать, что сталь ст 20 нашла широкое применение в самых разных конструкциях, как общего, так и специального назначения.

О конструкциях специального назначения можно сказать немного подробнее. Так, ст20 используется для изготовления: труб нагревателей, коллекторов и трубопроводов котлов высокого давления. Если Ваша деятельность связана с использованием углеродистых сталей круглого сечения, то Вам хорошо известно, как непросто найти надежного поставщика данного материала.

По данной причине можно часто встретить объявления “где купить сталь 45 50 мм в Казахстане” или “срочно куплю сталь 20 40 метров в Алматы”. В нашей компании Вы сможете купить сталь 45, 20 производства России как в Алматы, так и заказать доставку по всем крупным городам Казахстана.

Если вас интересует поставка углеродистых сталей ст45, ст20, обратитесь к нашим менеджерам и они просчитают Вам сроки поставки и предоставят коммерческое предложение, которое будет оптимально удовлетворять Вашим требованиям.

Мы готовы Вам предложить широкий ассортимент круглого проката: ст 40х, круг нержавеющий 12х15г9нд (aisi 201), 12х18н10 (aisi 304), круг бронзовый БрОЦС 5-5-5, БрАЖ 9-4, круг латунный, круг д16т дюралюминиевый и многое другое.

Для того, чтобы узнать цену и купить сталь 45, 20, Вы можете отправить письмо на электронный адрес торгового отдела: [email protected] , или позвонить в торговый отдел по телефонам: +7 (727) 329-71-67, 327-69-03, 395-63-87 мы работаем каждый рабочий день с 9.00 до 18.00 без перерывов!

Поставка осуществляется по всем крупным населенным пунктам РК осуществляем железнодорожным транспортом и грузовым автомобильным транспортом.

Возможна новая услуга – поставка до двери Клиента по всем крупным населенным пунктам Казахстана! Для того, чтобы рассчитать стоимость перевозки до Вашего города, обратитесь к нашим консультантам и они в кратчайшие сроки сделают расчет доставки любым удобным для Вас видом транспорта.

Приобретая в нашей компании сталь ст 45, 20, Вы получаете товар традиционно отличного качества и в указанный срок. Перевозка осуществляется специализированными транспортными организациями. Доставка по заданному квадрату улиц Алматы – бесплатно!

Источник: http://www.pts.com.kz/price-stal-45.html

Полезная информация

Главная / Полезная информация

Характеристики высокопрочной стали

Марки высокопрочной стали

Сталь является одним из самых важных материалов, который используется практически во всех отраслях промышленности. К высокопрочной стали (в зависимости от области применения) предъявляют различные требования. Марки сталей отличаются по структуре, химическому составу и по своим свойствам (физическим и механическим).

Сталью называют деформируемый сплав железа с углеводом (не более 2 процентов) и примесями других элементов: марганца, кремния, фосфора. К высокопрочному крепежу предъявляются особые требования.

Поэтому для получения стали, которая будет идеально соответствовать всем характеристикам добавляют специальные примеси – легирующие элементы. Это – хром, вольфрам, ванадий, титан, марганец или кремний.

 

СТАЛЬ МАРКИ 3

Углеродистая сталь обычного качества.

Именно такая сталь пользуются наибольшим спросом в строительстве. Причина такой популярности – технологичность, прочность и привлекательная цена. Еще одно преимущество этого сплава – возможность изготавливать из нее изделия, которые выдерживают большую нагрузку и обладают хорошей сопротивляемостью ударам.

Сталь 3 производят по ГОСТ 380-94, согласно ему сталь маркируются буквами «Ст» с порядковым номером от 0 до 6. Чем выше этот номер, тем большее количество углерода содержится в стали. А значит, лучше прочность, но при этом хуже пластические характеристики.

Сталь 3 хорошо сваривается, нефлокеночувствительна, не склонна к отпускной хрупкости. Сталь 3 содержит: углерод – 0,14-0,22%, кремний – 0,05-0,17%, марганец – 0,4-0,65%, никель, медь, хром – не более 0,3% , мышьяк не более 0,08%, серы и фосфора – до 0,05 и 0,04%.

Количество этих компонентов в сплаве Ст3 не допускается выше указанных значений.

Основа стали – феррит. Его характеристики не позволяют использовать его в чистом виде. Для улучшения показателя прочности феррита сталь насыщают углеродом, добавляют (легируют) хром, никель, кремний, марганец и проводят дополнительное термическое упрочнение.

Сталь 3 выдерживает широкий температурный диапазон при переменных нагрузках. Хорошо сваривается, штампуется в холодном и горячем состоянии, подвергается вытяжке. Применяется без термической обработки.

Свариваемость стали

Без ограничений – сварка производится без подогрева и без последующей термообработки. В стали, относящейся к хорошей, содержание углерода составляет менее 0,25%. Они свариваются без образования закалочных структур и трещин в широком диапазоне режимов сварки.

Температура применения

Минимальная температура применения (температура наиболее холодной пятидневки региона) – минус 30.

Максимальная температура применения – плюс 300.

СТАЛЬ МАРКИ 35

Качественная среднеуглеродистая сталь.

Такой вид стали применяют для деталей, которые требуют высокой пластичности и сопротивления удару. Качественные углеродистые стали типа 35 изготавливают по ГОСТ 1050-88 и маркируют двухзначными цифрами, которые указывают среднее содержание углерода в сотых долях процента. Например, сталь 35 (0,35 %).

Она обладает высокой прочностью (σв = 640…730 МПа, σ0,2 = 380…430 МПа) и относительно низкой пластичностью (δ = 9…14 %, ψ = 40…50 %). Кроме того, этот тип стали не восприимчив к средним напряжениям, обладает стойкостью к деформации и износостойкостью, не подвержен образованию трещин и коррозии.

Поэтому именно сталь 35 используют при производстве высокопрочного крепежа и фланцевых соединений.  Температурный диапазон: от -40 до +450 градусов Цельсия

Сталь 35 сваривается ограниченно. Способы сварки РДС, АДС под флюсом и газовой защитой, ЭШС. Рекомендуем подогрев и последующую термообработку. КТС без ограничений.

Свариваемость стали

Сталь конструкционной марки 35 сваривается ограниченно. С увеличением углерода в стали зона термического влияния и шов закаливаются, увеличивается твердость, сварные соединения становятся более хрупкими и склонными к образованию трещин. 

Удовлетворительные стали имеют содержание углерода от 0,25 до 0,35%. Они мало склонны к образованию трещин и при правильных режимах сварки получается качественный шов. Для улучшения качества сварки часто применяют подогрев.

Температура применения

Минимальная температура применения (температура наиболее холодной пятидневки региона) – минус 40.

Максимальная температура применения – плюс 425.

СТАЛЬ МАРКИ 35Х

Сталь легированная, хромистая

Крепежные изделия из стали 35Х обладают высокой конструктивной прочностью, гарантируют надежность конструкции. Кроме того, сталь 35Х хорошо сопротивляется ударным нагрузкам, обладает большим запасом вязкости и высоким сопротивлением усталости. Также, сталь 35Х имеет высокое сопротивление износу, коррозии, трещинам и другим дефектам. 

Главное преимущество крепежа из легированной конструкционной стали 35Х перед углеродистыми – это более высокая прочность за счет упрочнения феррита и большей прокаливаемости, меньший рост аустенитного зерна при нагреве и повышенная ударная вязкость. А уровень механических свойств повышен за счет термической обработке.

Свариваемость стали

Ограниченно свариваемая.

Температура применения

Минимальная температура применения (температура наиболее холодной пятидневки региона) – минус 40.

Максимальная температура применения – плюс 425.

СТАЛЬ МАРКИ 40Х

 Сталь конструкционная легированная. Сталь марки 40Х содержит 0,40% углерода и менее 1,5% хрома. Эта сталь довольно трудносвариваема. Поэтому, чтобы получить качественное сварное соединение, необходимы дополнительные операции. При сварке потребуется подогрев до 200-300 градусов, а потом – термообработка путем отжига.

Благодаря добавлению хрома, крепежные изделия из ст.40Х обладают твердостью, прочностью, жаропрочностью и устойчивостью к коррозии. Сталь 40Х рассчитана на значительные нагрузки.

Механические свойства стали 40х: предел кратковременной прочности – 570 – 940 МПа, предел пропорциональности – 320 – 800 МПа, относительное удлинение – 13 – 17%, относительное сужение – 35 – 55%, ударная вязкость – 400 – 850 кДж/кв.м.

Плюсы этой марки стали: устойчивость к действию высоких и низких температур и их резким перепадам, могут использоваться под открытым небом и даже в агрессивных, влажных средах. Еще одно неоспоримое преимущество крепежных изделий именно из этой марки стали – это отсутствие необходимости обрабатывать и очищать поверхность.

Свариваемость стали

Ограниченно свариваемая. Рекомендуется подогрев и последующая термообработка.

Температура применения

Минимальная температура применения (температура наиболее холодной пятидневки региона) – минус 40.

Максимальная температура применения – плюс 425.

СТАЛЬ МАРКИ 45

Сталь марки 45 обладает высокой стойкостью и прочностью. Сталь 45 применяют при изготовлении деталей механизмов, используемых при повышенных нагрузках и требующих сопротивления (ударам, трению).

Механические свойства этой стали позволяют ей выдерживать значительные перепады температур и другие неблагоприятные климатические воздействия.

Эта сталь способна выдержать температурные испытания от 200 до 600 градусов по Цельсию.

При использовании ст. 45 следует помнить, что:

• прочность снижается при нагревании до 200 0С;
• сталь является трудносвариваемой и характеризуется низкой флонекочувствительностью.

Сталь марки 45 — среднеуглеродистая; идеально подходит для изготовления деталей, требующих высокой прочности или высокой поверхностной твердости, а также деталей средненагруженных и не подвергающихся в работе истиранию.

Свариваемость стали

Высокоуглеродистую сталь марки 45 рекомендуют соединять контактной сваркой. Ограниченно свариваемые стали имеют содержание углерода от 0,36 до 0,45% и склонны к образованию трещин. Сварка требует обязательного подогрева. При их сварке требуются специальные технологические процессы.

Температура применения

Минимальная температура применения (температура наиболее холодной пятидневки региона) – минус 40.

Максимальная температура применения – плюс 425.

Сталь марки 09Г2С

Сталь конструкционная низколегированная.

Обозначение 09Г2С указывает, что в стали присутствует 0,09% углерода, буква «Г»  означает марганец, а цифра 2 – процентное содержание до 2% марганца. Буква «С» означает кремний, содержание кремния менее 1%.

Главное преимущество этой стали – высокая механическая прочность, которая позволяет применять более тонкие детали по сравнению с деталями, изготовленными из других сталей. А значит, детали из стали 09Г2С имеют меньший вес, что экономически более выгодно. Кроме того, еще один плюс этой стали – низкая склонность к отпускной хрупкости.  

Свариваемость стали

Марка стали 09Г2С широко используется для сварных конструкций. Сварка может производиться как без подогрева, так и с предварительным подогревом до 100-120 градусов по Цельсию.

Сварка довольно проста, причем сталь не закаливается и не перегревается в процессе сварки, благодаря чему не происходит снижение пластических свойств или увеличение ее зернистости.

При температуре воздуха минус 15 °С и ниже применяют предварительный местный подогрев независимо от толщины стали.

Температура применения

Минимальная температура применения (температура наиболее холодной пятидневки региона) – минус 70.

Максимальная температура применения – плюс 450.

  • ГОСТы крепежа
  • Программы для расчетов веса металлоизделий

Источник: https://xn--80akgdikc3bl.xn--p1ai/poleznaya-informaciya-dlya-stroiteley

Сталь 45

 

Заменитель

стали: 40Х, 50, 50Г2

Вид поставки

Сортовой прокат, в том числе фасонный: ГОСТ   1050-74, ГОСТ 2590-71, ГОСТ 2591-71, ГОСТ 2879-69, ГОСТ 8509-86, ГОСТ   8510-86, ГОСТ 8239-72, ГОСТ 8240-72, ГОСТ 10702-78. Калиброванный пруток   ГОСТ 1050-74, ГОСТ 7414-75, ГОСТ 8559-75, ГОСТ 8560-78, ГОСТ 10702-78.   Лист толстый ГОСТ 1577-81, ГОСТ 19903-74. Лист тонкий ГОСТ 16523-70.   Лента ГОСТ 2284-79. Полоса ГОСТ 1577-81, ГОСТ 103-76, ГОСТ 82-70.   Проволока ГОСТ 17305-71, ГОСТ 5663-79. Поковки и кованые заготовки ГОСТ   8479-70, ГОСТ 1131-71. Трубы ГОСТ 8732-78, ГОСТ 8733-87, ГОСТ 8734-75,   ГОСТ 8731-87, ГОСТ 21729-78.

Назначение

Вал-шестерни, коленчатые и распределительные   валы, шестерни, шпиндели, бандажи, цилиндры, кулачки и другие   нормализованные, улучшаемые и подвергаемые поверхностнй термообработке   детали, от которых требуется повышенная прочность.

Химический состав Ст45

   

Химический элемент

%

Кремний (Si)0.17-0.37
Медь (Cu), не более0.25
Мышьяк (As), не более0.08
Марганец (Mn)0.50-0.80
Никель (Ni), не более0.25
Фосфор (P), не более0.035
Хром (Cr), не более0.25
Сера (S), не более0.04

Механические свойства СТ45

Механические свойства при повышенных температурах

 

t испытания, °Cs0,2, МПаsB, МПаd5, %d, %y, %KCU, Дж/м2

Нормализация

200 340 690 10 36 64 
300 255 710 22 44 66 
400 225 560 21 65 55 
500 175 370 23 67 39 
600 78 215 33 90 59 

Образец диаметром 6 мм и   длиной 30 мм, кованый и нормализованный. Скорость деформирования 16   мм/мин. Скорость деформации 0,009 1/с.

700 140 170 43 96 
800 64 110 58 98 
900 54 76 62 100 
1000 34 50 72 100 
1100 22 34 81 100 
1200 15 27 90 100 

Механические свойства проката из стали Ст45

 

Термообработка, состояние поставкиСечение, ммsB, МПаd5, %d4, %y, %
Сталь горячекатаная, кованая, калиброванная и серебрянка 2-й категории после нормализации 25 600 16 40 
Сталь калиброванная 5-й категории после нагартовки 640 30 
Сталь калиброванная и калиброванная со специальной отделкой после отпуска или отжига 

Источник: http://gost-tu.ucoz.ru/publ/chjornye_metally/prochie_stali/svojstva_stali_st45/9-1-0-17

Оценка статьи:

Загрузка…

Поделиться с друзьями:

Сталь 45: характеристики по гост и область применения Ссылка на основную публикацию Adblock
detector

Закалка стали 45: суть технологии, используемые температуры

Особенности закалки стали 45: цель проведения, область применения изделий, прошедших термообработку. Этапы технологии, способы нагрева, среды охлаждения. Особенности нагрева токами высокой частоты. Температурные режимы.

Закалка стали 45 выполняется с целью повышения твердости, износостойкости и прочностных характеристик поверхности заготовок и деталей.

Является разновидностью термообработки, с помощью которой им придаются необходимые эксплуатационные свойства. По содержанию углерода конструкционная сталь 45 (0,45 % С) относится к среднеуглеродистой, что затрудняет механическую обработку и свариваемость.

Применяется такая сталь для изготовления конструкций и устройств, противостоящих нагрузкам. У металла хорошие показатели прочности, износостойкости, он не поддается коррозионным процессам в процессе эксплуатации.

Закаливание улучшает эти показатели, что и определяет области применения стали 45. Из нее изготавливают валы, цилиндры, шпиндели, кулачки и другие детали машин и механизмов машиностроительной, сельскохозяйственной, строительной и другой техники, а также плоскогубцы, тиски и другой инструмент и приспособления, применяемые в промышленности и быту.

Технология закалки стали 45


Закалить сталь 45 – значит подвергнуть ее нагреву до необходимой температуры, выдержке в течение определенного времени и охлаждению. Здесь есть свои нюансы. Нагрев металла осуществляют двумя способами:

  • в специальных электропечах непрерывного или периодического действия;
  • токами высокой частоты (ТВЧ).

Эти способы отличаются технологией, а именно температурой закалки, временем выдержки и средой охлаждения.

При нагреве в печи температура нагрева не превышает 860 °C, обычно сталь 45 нагревают со скоростью не больше 3 °C в секунду выше 790 °C, а в устройстве ТВЧ она может доходить до 920 °C со скоростью 250 °C в секунду соответственно.

Именно эти режимы позволяют изменить атомную решетку железа. В результате нагрева (температура должна быть выше растворения феррита в аустените) и выдержки она из объемноцентрированной станет гранецентрированной. Для того чтобы в металле произошло выравнивание структуры, его выдерживают в печи или в установке какое-то время.

Это зависит от толщины заготовки. Только после этого ее подвергают охлаждению. В это время происходит обратный процесс, что в результате придает поверхности прочность и твердость.

Охлаждение производят в специальных средах до температуры 20÷25 °C. В качестве рабочей среды может служить вода, минеральные масла или смесь воды с солями или каустической содой.

Температура рабочей среды колеблется в пределах 20÷60 °C и указывается в технологическом процессе проведения закалки стали 45. Режимы устанавливают в зависимости от состава закалочной среды. Деталь при этом после нагрева может опускаться в емкость с рабочей средой или охлаждаться способом разбрызгивания.

Сталь 45 чаще всего после нагрева охлаждают в воде или масле, при этом масло охлаждает равномерно, что препятствует возникновению трещин. Затем заготовку или деталь подвергают низкотемпературному отпуску, что способствует выравниванию тепловых напряжений.

Это позволяет получить твердость рабочей поверхности 50 HRC, что для большинства деталей, работающих при нагрузках, более чем достаточно.

Особенности технологии закалки токами высокой частоты


Нагрев осуществляют в установке, называемой индукционной. Состоит из генератора высокой частоты и индуктора простой или сложной формы. Закаливаемая деталь может устанавливаться в самом индукторе или возле него.

Переменный ток, проходя через индуктор, вызывает возникновение вихревых токов (токи Фуко), благодаря чему происходит быстрый нагрев поверхности заготовки.

Изменяя параметры тока, можно регулировать глубину прогрева заготовки, а следовательно, и прочность. Твердость поверхности лежит в пределах 58÷62 HRC, в то время как сердцевина остается более мягкой. Таких показателей невозможно добиться, осуществляя нагрев в печи, т. к. он будет осуществляться по всему объему.

Сразу после закалки сталь 45 подлежит следующему этапу термообработки – нормализации или отпуску.

Процесс закалки ТВЧ стали 45 показан на видео:

Режим закалки может быть одновременным и последовательным. Это зависит от размеров детали, которая подлежит закалке. Первый случай используется для деталей небольших размеров, второй – для крупногабаритных.

Характеристика и свойства стали 45 после закалки

ПОСМОТРЕТЬ Индукционный нагреватель для закаливания стали на AliExpress →

Свойства стали 45 после закалки на предприятиях, выпускающих продукцию разного назначения, обязательно проверяются в первую очередь на твердость. Она становится намного выше, чем была у заготовки, и должна иметь твердость не менее 50 по Роквеллу.

Этот показатель свидетельствует о качестве проведенной термообработки. Закалка стали значительно расширяет область ее применения. Такие заготовки и детали износостойкие, прочные и могут выдерживать значительные нагрузки. Они с трудом поддаются коррозионным процессам.

Несколько слов о способе закалки стали 45 в домашних условиях. Ее можно выполнить, если соблюдать технологию выполнения работ и технику безопасности.

Главное – правильно осуществить нагрев, а поэтому не лишним будет посмотреть на шкалу зависимости цвета от температуры нагрева металла. Она подскажет, какого цвета должна быть сталь 45 при нагреве не выше 860 °C.

Просим тех, кто занимался закалкой стали 45 в производственных и домашних условиях, поделиться опытом в комментариях к тексту.

Углеродистая сталь 45: характеристики, применение, твердость, аналоги

Характеристики стали 45 позволяют классифицировать ее, как конструкционный сплав феррито-перлитного типа. Эти материалы находят применение во многих сферах, что обусловлено различным содержанием углерода. На свойства сплава оказывают влияние также различные технологии термообработки.

Состав сплава

Характеристики и применение стали 45 определяются ее химическим составом. Каждый элемент, который добавляется при легировании, в определенной степени изменяет механические свойства материала. Согласно установленным стандартам класс углеродистых сталей конструкционного типа маркируется двузначным числом. Оно соответствует усредненному значению концентрации углерода, выраженному в сотых долях процента.

Если расшифровать марку стали 45, можно понять, что главными составными частями являются железо (Fe) и углерод (C). Повышенная твердость стали связана именно с количественной характеристикой углерода. Однако в сплаве присутствуют и другие металлы, количественное соотношение которых регламентируется ГОСТом 1050-72:

  • марганец – 0,5-0,8%;
  • кремний – 0,17-0,37%;
  • небольшие примеси других металлов, общее количество которых не превышает 0,7%;
  • фосфор – до 0,035%;
  • сера – до 0,04%.

Кремний и марганец относятся к полезным добавкам, их присутствие способствует:

  • повышению пластичности;
  • прочностных характеристик после термообработки;
  • устранению внутренних напряжений;
  • уменьшению вероятности возникновения трещин.

Состав определяет и химические свойства стали 45:

  • степень окисления;
  • подверженность коррозии;
  • показатели жаропрочности.

Малые количества таких элементов, как никель, медь, хром, мышьяк, не оказывают особого влияния на свойства стали. Среди вредных примесей – сера и фосфор, попадающие в нее в процессе выплавки. Они снижают пластичность и ударную вязкость, вызывая явление красноломкости. Однако их содержание в сплаве не превышает минимально допустимых значений.

Аналоги и сортамент

В качестве отечественных заменителей марки стали 45 можно использовать:

Сплав имеет множество аналогов и в других странах:

  • 1044, 1045, 1045H, G10450, M1044 – Соединенные Штаты;
  • S45C, SWRCh55K – Япония;
  • 1.0503, C45E – Германия;
  • 1C45, XC45h2 – Франция;
  • C45, C45R – Италия;
  • ZG310-570 – Китай;
  • 1650 – Швеция;
  • C45SW – Австрия;
  • SM45C – Южная Корея.

Конcтрукционная cталь 45 поставляется в виде:

  • сортового проката, для которого установлено несколько стандартов;
  • калиброванного прутка;
  • серебрянки и шлифованного прутка по ГОСТу 14955-77;
  • толстой и тонкой листовой стали;
  • лент и полос;
  • проволоки;
  • кованых заготовок;
  • газопроводных труб и соединительных фитингов.

Основные свойства

Для измерения параметров сплава используются различные методы:

  • твердость рассчитывается, исходя из силы противодействия образца влиянию алмазного стержня;
  • показатели прочности и пластичности – растяжением образцов до разрыва;
  • вязкость – ударными нагрузками.

Физико-механические свойства стали 45 во многом определяются coдержанием углерода, так как другие примеси незначительны:

  • удельный вес – 7826-7595 кг/м3, он колеблется в небольших пределах в зависимости от состава;
  • прeдел текучeсти – 640 МПа;
  • предел выноcливости – 245 МПа;
  • величина ударной вязкости – 66 кДж/м2;
  • коэффициент упругоcти – 2 МПа;
  • коэффициент теплопроводности – 48 Вт/м*град;
  • удельная теплоемкость – 473 Дж/кг*град;
  • значение относительного удлинения – 15%;
  • показатель отнoсительного сужения – 40%;
  • коэффициент линейного расширения при 1000С – 11,9 1/град.;
  • температурный интервал ковки – 1250-700 градусов;
  • твердость необработанной стали – 20-22 по Роквеллу;
  • твердость после термообработки увеличивается более чем в 2 раза.

Сталь хорошо поддается механической обработке, однако недостаточно устойчива к коррозии. При эксплуатации изделий в агрессивных или влажных средах необходимо покрывать их поверхность защитным составом. Сплав трудно поддается сварочным операциям, поэтому требует предварительного подогрева до 150-200 градусов. Сварные швы не отличаются достаточной прочностью и склонны к образованию трещин.

Физические свойства стали 45 зависят от температуры, при которой проводятся испытания опытного образца. Например, плотность металла с повышением температуры уменьшается:

  • при 20 0С она составляет – 7826 кг/м3;
  • при 1000С – 7799 кг/м3;
  • 2000С – 7769 кг/м3;
  • 8000С – 7595 кг/м3.

Термическая обработка

Любая сталь подвергается термической обработке с целью улучшения ее свойств. Во время процессов нагревания, выдержки и последующего охлаждения изменяется внутренняя структура металла. Термообработка разделяется на 3 этапа, которые отличаются:

  • временем нагрева;
  • скоростью охлаждения;
  • средой, в которой происходит процесс охлаждения.

Первый этап – отжиг, происходит в специальных печах, где металл нагревается до высоких температур, а затем постепенно охлаждается:

  • при отжиге I рода нагрев не превышает критических точек;
  • при отжиге II рода металл нагревается выше критического значения, что приводит к изменению его кристаллической структуры.

Любой вид отжига снимает внутренние напряжения и уменьшает неоднородность структуры. Для сплава 45 температура отжига составляет 780-830 градусов.

Второй этап – закалка. Температура закалки стали 45 – 820-860 градусов, после чего проводится медленное охлаждение в одной из сред:

  • чистой воде;
  • растворах солей;
  • минеральных маслах.

Третий этап – отпуск стали, предназначен для снятия остаточных напряжений и повышения вязкости металла. Сталь нагревают до температуры ниже критической, а затем охлаждают в специальных ваннах:

  • с раствором селитры;
  • минеральным маслом;
  • расплавом щелочи.

Преимущества и недостатки

Свойства стали 45 определили ее основные достоинства:

  • высокую прочность, которая необходима для механизмов, работающих в условиях интенсивных нагрузок;
  • устойчивость к ударам и трению;
  • возможность использования в неблагоприятных климатических условиях;
  • высокий предел выносливости и износостойкости;
  • устойчивость к температурным перепадам;
  • функциональность и доступная стоимость;
  • восприимчивость к механической обработке;
  • низкая флокеночувствительность;
  • отсутствие склонности к отпускной хрупкости;
  • оптимальный диапазон рабочих температур, за границей которого снижаются механические свойства стали 45 – от 200 до 600 градусов.

При использовании стали следует учитывать не только ее плюсы, но и минусы:

  • нагревание до 200 градусов ведет к снижению прочности;
  • ограниченная свариваемость материала требует специальных технологических приемов;
  • сталь неустойчива к коррозии.

Спектр применения

Характеристики стали 45 делают возможным ее применение в тех производствах, где требуются повышенная прочность и износоустойчивость деталей, в частности, для изготовления:

  • валов и шестерен;
  • цилиндрических передач;
  • рессорных конструкций, испытывающих не очень сильные нагрузки;
  • газопроводных труб и соединительных элементов к ним;
  • крепежных элементов – гаек, шайб, анкерных болтов;
  • радиальных подшипников для валов, скорость вращения которых не превышает 0,2 м/сек;
  • других деталей, которые подвергаются постоянному поверхностному воздействию.

Из стали 45 часто изготавливают державки режущих инструментов, на которые затем крепят пластину из твердого сплава, что позволяет сэкономить более дорогие материалы. Отсутствие отпускной хрупкости позволяет использовать ее для производства изделий сложной формы.

Свойства стального материала – SteelConstruction.info

Свойства конструкционной стали зависят как от ее химического состава, так и от метода производства, включая обработку во время изготовления. Стандарты продукции определяют пределы для состава, качества и производительности, и эти ограничения используются или предполагаются проектировщиками конструкций. В этой статье рассматриваются основные свойства, представляющие интерес для дизайнера, и указываются соответствующие стандарты для конкретных продуктов.Спецификация металлоконструкций рассматривается в отдельной статье.

 

Схематическая диаграмма напряжения / деформации для стали

[вверх] Свойства материала, необходимые для проектирования

Свойства, которые необходимо учитывать проектировщикам при выборе изделий из стальных конструкций:


Для проектирования механические свойства основаны на минимальных значениях, указанных в соответствующем стандарте на продукцию.Свариваемость определяется химическим составом сплава, который регулируется стандартами на продукцию. Прочность зависит от конкретного типа сплава – обычная углеродистая сталь, атмосферостойкая сталь или нержавеющая сталь.

[наверх] Факторы, влияющие на механические свойства

Сталь

приобретает свои механические свойства благодаря сочетанию химического состава, термической обработки и производственных процессов. Хотя основным компонентом стали является железо, добавление очень небольших количеств других элементов может оказать заметное влияние на свойства стали.Прочность стали можно повысить, добавив такие сплавы, как марганец, ниобий и ванадий. Однако эти добавки в сплав также могут отрицательно повлиять на другие свойства, такие как пластичность, ударная вязкость и свариваемость.

Сведение к минимуму уровня серы может повысить пластичность, а ударную вязкость можно улучшить добавлением никеля. Поэтому химический состав для каждой спецификации стали тщательно сбалансирован и протестирован во время ее производства, чтобы гарантировать достижение соответствующих свойств.

Легирующие элементы также по-разному реагируют, когда материал подвергается термообработке, включающей охлаждение с заданной скоростью от определенной пиковой температуры. Производственный процесс может включать комбинации термической обработки и механической обработки, которые имеют решающее значение для характеристик стали.

Механическая обработка осуществляется во время прокатки или формовки стали. Чем больше прокатывается стали, тем прочнее она становится. Этот эффект очевиден в стандартах на материалы, которые, как правило, указывают на снижение предела текучести с увеличением толщины материала.

Эффект термической обработки лучше всего объясняется с помощью различных технологических процессов, которые могут использоваться при производстве стали, основными из которых являются:

  • Сталь после проката
  • Сталь нормализованная
  • Сталь нормализованный прокат
  • Сталь термомеханически прокатанная (ТМР)
  • Закаленная и отпущенная (Q&T) сталь.


Сталь охлаждается во время прокатки, при этом типичная температура окончательной прокатки составляет около 750 ° C.Сталь, которой затем дают остыть естественным путем, называется материалом «после прокатки». Нормализация происходит, когда прокатанный материал снова нагревается примерно до 900 ° C и выдерживается при этой температуре в течение определенного времени, прежде чем дать ему возможность естественным образом остыть. Этот процесс уменьшает размер зерна и улучшает механические свойства, в частности, ударную вязкость. Нормализованная прокатка – это процесс, при котором после завершения прокатки температура превышает 900 ° C. Это оказывает такое же влияние на свойства, как и нормализация, но исключает дополнительный процесс повторного нагрева материала.Нормализованные и нормализованные прокатные стали имеют обозначение “N”.

Использование высокопрочной стали может уменьшить необходимый объем стали, но сталь должна быть прочной при рабочих температурах, а также должна обладать достаточной пластичностью, чтобы противостоять любому распространению вязких трещин. Следовательно, стали с более высокой прочностью требуют улучшенной ударной вязкости и пластичности, которые могут быть достигнуты только с использованием низкоуглеродистых чистых сталей и за счет максимального измельчения зерна. Реализация процесса термомеханической прокатки (TMR) является эффективным способом достижения этой цели.

Термомеханически прокатанная сталь использует особый химический состав стали, что позволяет снизить температуру окончательной прокатки примерно до 700 ° C. Для прокатки стали при таких более низких температурах требуется большее усилие, и свойства сохраняются, если повторно не нагреть сталь выше 650 ° C. Сталь, подвергнутая термомеханическому прокату, имеет маркировку «М».

Процесс обработки закаленной и отпущенной стали начинается с нормализованного материала при температуре 900 ° C. Он быстро охлаждается или закаливается для производства стали с высокой прочностью и твердостью, но с низкой вязкостью.Прочность восстанавливается повторным нагревом до 600 ° C, поддержанием температуры в течение определенного времени и затем естественным охлаждением (темперирование). Закаленная и отпущенная сталь обозначается буквой Q.

Закалка включает быстрое охлаждение продукта путем погружения непосредственно в воду или масло. Его часто используют в сочетании с отпуском, который представляет собой термообработку на второй стадии до температур ниже диапазона аустенизации. Эффект отпуска заключается в смягчении ранее закаленных структур и их повышении прочности и пластичности.

 

Схематический график температуры / времени процессов прокатки

[наверх] Прочность

[вверх] Предел текучести

Предел текучести является наиболее распространенным свойством, которое может понадобиться проектировщику, поскольку это основа, используемая для большинства правил, приведенных в нормах проектирования. В европейских стандартах для конструкционных углеродистых сталей (включая погодостойкую сталь) основное обозначение относится к пределу текучести, т.е.грамм. Сталь S355 – это конструкционная сталь с указанным минимальным пределом текучести 355 Н / мм².

Стандарты на продукцию также определяют допустимый диапазон значений предела прочности на разрыв (UTS). Минимальный UTS имеет отношение к некоторым аспектам дизайна.

[вверх] Горячекатаный прокат

Для горячекатаных углеродистых сталей цифра в обозначении представляет собой значение предела текучести для материала толщиной до 16 мм. Конструкторам следует учитывать, что предел текучести уменьшается с увеличением толщины листа или профиля (более тонкий материал обрабатывается больше, чем толстый материал, и обработка увеличивает прочность).Для двух наиболее распространенных марок стали, используемых в Великобритании, указанные минимальный предел текучести и минимальный предел прочности на растяжение показаны в таблице ниже для сталей в соответствии с BS EN 10025-2 [1] .

Минимальная текучесть и предел прочности для обычных марок стали
Марка Предел текучести (Н / мм 2 ) для номинальной толщины t (мм) Предел прочности на разрыв (Н / мм 2 ) для номинальной толщины t (мм)
т ≤ 16 16 40 63 3 100
S275 275 265 255 245 410 400
S355 355 345 335 325 470 450

Национальное приложение Великобритании к BS EN 1993-1-1 [2] позволяет использовать минимальное значение текучести для конкретной толщины в качестве номинального (характеристического) предела текучести f y и минимального значения прочности на растяжение прочность f u использовать как номинальный (характеристический) предел прочности.

Подобные значения даны для других марок в других частях BS EN 10025 и для полых профилей в соответствии с BS EN 10210-1 [3] .

[вверх] Холодногнутые стали

Существует широкий ассортимент марок стали для полосовой стали, пригодной для холодной штамповки. Минимальные значения предела текучести и предела прочности указаны в соответствующем стандарте на продукцию BS EN 10346 [4] .

BS EN 1993-1-3 [5] содержит значения базового предела текучести f yb и предела прочности на растяжение f u , которые должны использоваться в качестве характерных значений при проектировании.

[вверх] Нержавеющая сталь

Марки нержавеющей стали обозначаются числовым «номером стали» (например, 1.4401 для типичной аустенитной стали), а не системой обозначений «S» для углеродистых сталей. Зависимость напряжение-деформация не имеет четкого различия между пределом текучести, и «предел текучести» нержавеющей стали для нержавеющей стали обычно указывается в терминах предела текучести, определенного для конкретной смещенной остаточной деформации (обычно 0,2% деформации).

Прочность обычно используемых конструкционных нержавеющих сталей составляет от 170 до 450 Н / мм². Аустенитные стали имеют более низкий предел текучести, чем обычно используемые углеродистые стали; Дуплексные стали имеют более высокий предел текучести, чем обычные углеродистые стали. Как для аустенитных, так и для дуплексных нержавеющих сталей отношение предела прочности к пределу текучести больше, чем для углеродистых сталей.

BS EN 1993-1-4 [6] содержит в таблице номинальные (характеристические) значения предела текучести f y и минимального предела прочности на растяжение f u для сталей согласно BS EN 10088-1 [7] для использование в дизайне.

[вверх] Прочность

 

Образец для испытаний на удар с V-образным надрезом

Все материалы имеют недостатки. В стали эти дефекты проявляются в виде очень мелких трещин. Если сталь недостаточно прочная, «трещина» может быстро распространяться без пластической деформации и привести к «хрупкому разрушению». Риск хрупкого разрушения увеличивается с увеличением толщины, растягивающего напряжения, концентраторов напряжений и более низких температур.Вязкость стали и ее способность противостоять хрупкому разрушению зависят от ряда факторов, которые следует учитывать на этапе спецификации. Удобной мерой прочности является испытание на удар по Шарпи с V-образным надрезом – см. Изображение справа. В этом испытании измеряется энергия удара, необходимая для разрушения небольшого образца с надрезом при заданной температуре одним ударом маятника.

В различных стандартах на продукцию указываются минимальные значения энергии удара для различных классов прочности каждого класса прочности.Для нелегированных конструкционных сталей основными обозначениями марок стали JR, J0, J2 и K2. Для мелкозернистых сталей, закаленных и отпущенных сталей (которые обычно более жесткие, с более высокой энергией удара) используются разные обозначения. Сводка обозначений ударной вязкости приведена в таблице ниже.

Указанная минимальная энергия удара для углеродистой стали марки
Стандартный Подкладка Ударная вязкость Температура испытания
BS EN 10025-2 [1]
BS EN 10210-1 [3]
JR 27J 20 o С
J0 27J 0 o С
J2 27J-20 o С
К2 40J-20 o С
BS EN 10025-3 [8] N 40J-20 o c
NL 27J-50 о с
BS EN 10025-4 [9] M 40J-20 o c
мл 27J-50 о с
BS EN 10025-5 [10] J0 27J 0 o С
J2 27J-20 o С
К2 40J-20 o С
J4 27J-40 o С
J5 27J-50 o С
BS EN 10025-6 [11] Q 30J-20 o c
QL 30J-40 о с
QL1 30J -60 o c

Для тонкостенных сталей для холодной штамповки не предъявляются требования к энергии удара для материала толщиной менее 6 мм.

Выбор подходящего подкласса для обеспечения соответствующей прочности в расчетных ситуациях приведен в BS EN 1993‑1‑10 [12] и связанном с ним UK NA [13] . Правила связывают температуру воздействия, уровень напряжений и т. Д. С «предельной толщиной» для каждого подкласса стали. PD 6695-1-10 [14] содержит полезные справочные таблицы, а руководство по выбору подходящего субсорта дано в ED007.

 

Эти правила проектирования были разработаны для конструкций, подверженных усталости, таких как мосты и опорные конструкции кранов, и признано, что их использование для зданий, где усталость играет второстепенную роль, является чрезвычайно безопасным.

Публикация SCI P419 представляет модифицированные пределы толщины стали, которые могут использоваться в зданиях, где усталость не является предметом рассмотрения при проектировании. Эти новые пределы были получены с использованием того же подхода, что и правила проектирования Еврокода, но существенно снижают рост трещин из-за усталости. Слово «уменьшить» используется, поскольку предполагать, что никакого роста вообще нет, означало бы полностью устранить эффект утомления. Допускается некоторая усталость (20 000 циклов) на основании ориентировочных указаний стандарта DIN.

Термин «квазистатический» будет охватывать такие конструкции – в действительности, может иметь место некоторая ограниченная цикличность нагрузки, но это обычно не рассматривается – подход к проектированию состоит в том, чтобы рассматривать все нагрузки как статические. Ключом к новому подходу является формула для выражения роста трещины за период до 20 000 циклов. Эксперты из Ахенского университета (которые участвовали в разработке Еврокода) дали это важнейшее выражение.

Дополнительная информация доступна в технической статье в сентябрьском выпуске журнала NSC за 2017 год.

Нержавеющая сталь обычно намного прочнее углеродистой стали; минимальные значения указаны в BS EN 10088-4 [15] . BS EN 1993-1-4 [6] утверждает, что аустенитные и дуплексные стали достаточно вязкие и не подвержены хрупкому разрушению при рабочих температурах до -40 ° C.

[вверху] Пластичность

Пластичность – это мера степени, в которой материал может деформироваться или растягиваться между началом текучести и возможным разрушением под действием растягивающей нагрузки, как показано на рисунке ниже.Конструктор полагается на пластичность для ряда аспектов проектирования, включая перераспределение напряжений в предельном состоянии, конструкцию группы болтов, снижение риска распространения усталостной трещины и в производственных процессах сварки, изгиба и правки. Различные стандарты для марок стали в приведенной выше таблице настаивают на минимальном значении пластичности, поэтому проектные допущения действительны, и если они указаны правильно, проектировщик может быть уверен в их адекватных характеристиках.

 

Напряжение – деформация стали

[вверх] Свариваемость

 

Приварка ребер жесткости к большой сборной балке
(Изображение любезно предоставлено Mabey Bridge Ltd)

Все конструкционные стали в основном поддаются сварке. Однако сварка предполагает локальное плавление стали, которая впоследствии остывает.Охлаждение может быть довольно быстрым, потому что окружающий материал, например балка обеспечивает большой «теплоотвод», а сварной шов (и вводимое тепло) обычно относительно невелик. Это может привести к упрочнению «зоны термического влияния» (HAZ) и снижению ударной вязкости. Чем больше толщина материала, тем больше снижение ударной вязкости.

Склонность к охрупчиванию также зависит от легирующих элементов, главным образом, но не исключительно, от содержания углерода. Эту восприимчивость можно выразить как «эквивалентное значение углерода» (CEV), и различные стандарты продукции для углеродистой стали содержат выражения для определения этого значения.

BS EN 10025 [1] устанавливает обязательные пределы для CEV для всех покрываемых изделий из конструкционной стали, и это простая задача для тех, кто контролирует сварку, – гарантировать, что используемые спецификации процедуры сварки соответствуют соответствующей марке стали и CEV.

[вверх] Прочие механические свойства стали

Другие важные для проектировщика механические свойства конструкционной стали включают:

  • Модуль упругости, E = 210 000 Н / мм²
  • Модуль сдвига, G = E / [2 (1 + ν )] Н / мм², часто принимается равным 81 000 Н / мм²
  • Коэффициент Пуассона, ν = 0.3
  • Коэффициент теплового расширения, α = 12 x 10 -6 / ° C (в диапазоне температур окружающей среды).

[вверху] Прочность

 

Нанесение защиты от коррозии на месте
(Изображение любезно предоставлено Hempel UK Ltd.)

Еще одним важным свойством является защита от коррозии. Хотя доступны специальные коррозионно-стойкие стали, они обычно не используются в строительстве.Исключением является погодостойкая сталь.

Наиболее распространенными способами защиты конструкционной стали от коррозии являются окраска или гальваника. Требуемый тип и степень защиты покрытия зависит от степени воздействия, местоположения, расчетного срока службы и т. Д. Во многих случаях во внутренних сухих условиях не требуется никаких антикоррозионных покрытий, кроме соответствующей противопожарной защиты. Доступна подробная информация о защите от коррозии конструкционной стали.

[вверх] Погодостойкая сталь

Погодоустойчивая сталь – это высокопрочная низколегированная сталь, которая противостоит коррозии, образуя прилипшую защитную «патину» от ржавчины, которая препятствует дальнейшей коррозии.Защитное покрытие не требуется. Он широко используется в Великобритании для строительства мостов и некоторых зданий. Он также используется для архитектурных элементов и скульптурных сооружений, таких как Ангел Севера.

 

Ангел Севера

[вверху] Нержавеющая сталь

 

Типичные кривые напряжение-деформация для нержавеющей и углеродистой стали в отожженном состоянии

Нержавеющая сталь – это материал с высокой устойчивостью к коррозии, который можно использовать в конструкционных целях, особенно там, где требуется высококачественная обработка поверхности.Подходящие классы воздействия в типичных условиях окружающей среды приведены ниже.

Поведение нержавеющих сталей при растяжении отличается от углеродистых сталей по ряду аспектов. Наиболее важное различие заключается в форме кривой напряжения-деформации. В то время как углеродистая сталь обычно демонстрирует линейное упругое поведение до предела текучести и плато перед деформационным упрочнением, нержавеющая сталь имеет более округлую реакцию без четко определенного предела текучести. Следовательно, предел текучести нержавеющей стали обычно определяется для конкретной остаточной деформации смещения (обычно 0.2% деформации), как показано на рисунке справа, на котором показаны типичные экспериментальные кривые напряжение-деформация для обычных аустенитных и дуплексных нержавеющих сталей. Показанные кривые представляют диапазон материалов, которые могут быть поставлены, и не должны использоваться при проектировании.

Механические свойства обычных нержавеющих сталей согласно EN 10088-4 [15]
Описание Марка Минимум 0.Предел текучести 2% (Н / мм 2 ) Предел прочности на разрыв (Н / мм 2 ) Относительное удлинение при разрыве (%)
Основные хромоникелевые аустенитные стали 1.4301 210 520–720 45
1.4307 200 500–700 45
Молибден-хромникелевые аустенитные стали 1.4401 220 520–670 45
1.4404 220 520–670 45
Дуплексные стали 1,4162 450 650–850 30
1.4462 460 640–840 25

Механические свойства относятся к горячекатаному листу. Для холоднокатаной и горячекатаной полосы указанные значения прочности на 10-17% выше.

Рекомендации по выбору нержавеющей стали
BS EN ISO 9223 [16] Класс атмосферной коррозии Типичная внешняя среда Подходящая нержавеющая сталь
C1 (Очень низкий) Пустыни и арктические районы (очень низкая влажность) 1.4301 / 1.4307, 1.4162
C2 (Низкий) Засушливые или слабозагрязненные (сельские районы) 1.4301 / 1.4307, 1.4162
C3 (средний) Прибрежные районы с небольшими отложениями соли
Городские или промышленные районы с умеренным загрязнением
1.4401 / 1.4404, 1.4162
(1.4301 / 1.4307)
C4 (высокий) Загрязненная городская и промышленная атмосфера
Прибрежные районы с умеренными солевыми отложениями
Дорожная среда с солями для защиты от обледенения
1.4462, (1.4401 / 1.4404), другие более высоколегированные дуплексы или аустенитные материалы
C5 (Очень высокий) Сильно загрязненная промышленная среда с высокой влажностью
Морская среда с высокой степенью солевых отложений и брызг
1.4462, другие более высоколегированные дуплексы или аустенитные материалы

Материалы, подходящие для более высокого класса, могут использоваться для более низких классов, но могут быть экономически неэффективными. Материалы в скобках могут быть рассмотрены, если допустима умеренная коррозия. Накопление коррозионных загрязнителей и хлоридов будет выше в защищенных местах; следовательно, может потребоваться выбрать рекомендуемый сорт из следующего более высокого класса коррозии.

[вверх] Список литературы

  1. 1.0 1,1 1,2 BS EN 10025-2: 2019 Горячекатаный прокат из конструкционных сталей. Технические условия поставки нелегированных конструкционных сталей, BSI.
  2. ↑ NA + A1: 2014 к BS EN 1993-1-1: 2005 + A1: 2014, Национальное приложение Великобритании к Еврокоду 3: Проектирование стальных конструкций Общие правила и правила для зданий, BSI
  3. 3,0 3,1 BS EN 10210-1: 2006 Конструкционные полые профили горячей обработки из нелегированных и мелкозернистых сталей. Технические требования к доставке, BSI.
  4. ↑ BS EN 10346: 2015 Стальной плоский прокат с непрерывным горячим покрытием для холодной штамповки. Технические условия поставки. BSI
  5. ↑ BS EN 1993-1-3: 2006 Еврокод 3: Проектирование стальных конструкций. Общие правила – Дополнительные правила для холодногнутых профилей и листов, BSI.
  6. 6,0 6,1 BS EN 1993-1-4: 2006 + A1: 2015 Еврокод 3. Проектирование стальных конструкций. Основные правила. Дополнительные правила для нержавеющих сталей, BSI
  7. ↑ BS EN 10088-1: 2014 Нержавеющие стали.Список нержавеющих сталей, BSI
  8. ↑ BS EN 10025-3: 2019, Горячекатаный прокат из конструкционных сталей, Часть 3: Технические условия поставки нормализованных / нормализованных прокатных свариваемых мелкозернистых конструкционных сталей, BSI
  9. ↑ BS EN 10025-4: 2019, Горячекатаный прокат из конструкционных сталей, Часть 4: Технические условия поставки термомеханического проката свариваемых мелкозернистых конструкционных сталей, BSI
  10. ↑ BS EN 10025-5: 2019, Горячекатаный прокат из конструкционных сталей, Часть 5: Технические условия поставки для конструкционных сталей с повышенной стойкостью к атмосферной коррозии, BSI
  11. ↑ BS EN 10025-6: 2019, Горячекатаный прокат из конструкционных сталей, Часть 6: Технические условия поставки плоского проката из конструкционных сталей с высоким пределом текучести в закаленном и отпущенном состоянии, BSI
  12. ↑ BS EN 1993-1-10: 2005 Еврокод 3.Проектирование металлоконструкций. Вязкость материала и свойства по толщине, BSI.
  13. ↑ NA к BS EN 1993-1-10: 2005, Национальное приложение Великобритании к Еврокоду 3: Проектирование стальных конструкций. Прочность материала и свойства по толщине. BSI
  14. ↑ PD 6695-1-10: 2009 Рекомендации по проектированию конструкций согласно BS EN 1993-1-10. BSI
  15. 15,0 15,1 BS EN 10088-4: 2009 Нержавеющие стали. Технические условия поставки листов и полос из коррозионно-стойких сталей строительного назначения, BSI.
  16. ↑ BS EN ISO 9223: 2012 Коррозия металлов и сплавов, Коррозионная активность атмосферы, Классификация, определение и оценка. BSI

[вверх] Ресурсы

[вверху] См. Также

Справочник по классам

: Сталь AISI 4140 | Металлические супермаркеты

Что такое 4140 Steel?

Сталь

AISI 4140 – это низколегированная сталь, содержащая хром, молибден и марганец. Он широко используется во многих отраслях промышленности и является отличным выбором материала благодаря своей прочности, высокой усталостной прочности, а также стойкости к истиранию и ударам.Не многие марки могут сравниться с универсальностью и полезностью 4140.

4140 Обозначение марки

При обсуждении AISI 4140 важно понимать, что означает номер класса:

Номер Значение
4 Обозначает, что сталь 4140 является молибденовой сталью, что указывает на то, что она содержит большее количество молибдена, чем другие стали, такие как серия 1xxx.
1 Обозначает, что сталь 4140 также имеет добавки хрома; больше, чем сталь 46хх, например.
40 Используется для отличия стали 4140 от других сталей серии 41xx.

Как производится сталь 4140?

AISI 4140 изготавливается путем помещения железа, углерода и других легирующих элементов в электрическую печь или кислородную печь. Основными легирующими элементами, добавленными в AISI 4140, являются:

  • Хром
  • Марганец
  • Молибден

После того, как железо, углерод и другие легирующие элементы были смешаны вместе в жидкой форме, ему дают остыть.Затем сталь можно отжечь; возможно несколько раз.

После завершения отжига сталь снова нагревается до расплавленной фазы, чтобы ее можно было вылить в желаемую форму и подвергать горячей или холодной обработке с помощью валков или других инструментов для достижения желаемой толщины. Конечно, есть и другие специальные операции, которые могут быть добавлены к этому, чтобы уменьшить прокатную окалину или улучшить механические свойства.

Механические свойства стали 4140

AISI 4140 – низколегированная сталь.Для улучшения механических свойств низколегированных сталей используются не только железо и углерод, но и другие элементы. В AISI 4140 для повышения прочности и прокаливаемости стали используются добавки хрома, молибдена и марганца. Благодаря добавкам хрома и молибдена AISI 4140 считается хромолибденовой сталью.

AISI 4140 обладает несколькими важными механическими свойствами, в том числе:

  • Прочность на растяжение: Сталь AISI 4140 обычно имеет целевой предел прочности на разрыв около 95 000 фунтов на квадратный дюйм.
  • Прочность
  • Пластичность
  • Прокаливаемость

Химические свойства

В таблице ниже показан химический состав AISI 4140:

.
С Cr Mn Si Пн S P Fe
0,38–0,43% 0,80–1,10% 0,75–1,0% 0,15-0,30% 0,15-0,25% 0.040% макс 0,035% макс. Баланс

Добавление хрома и молибдена повышает коррозионную стойкость. Молибден может быть особенно полезен при попытке противостоять коррозии из-за хлоридов. Марганец в AISI 4140 используется для повышения прокаливаемости и в качестве раскислителя. В легированных сталях марганец также может соединяться с серой для улучшения обрабатываемости и повышения эффективности процесса науглероживания.

Обновление видео: 4140 Руководство по качеству стали

Узнайте больше о стали 4140 из нашего видеоблога с указанием марок:

Metal Supermarkets – крупнейший в мире поставщик мелкосерийного металла с более чем 85 обычными магазинами в США, Канаде и Великобритании.Мы эксперты по металлу и обеспечиваем качественное обслуживание клиентов и продукцию с 1985 года.

В Metal Supermarkets мы поставляем широкий ассортимент металлов для различных областей применения. В нашем ассортименте: нержавеющая сталь, легированная сталь, оцинкованная сталь, инструментальная сталь, алюминий, латунь, бронза и медь.

Наша горячекатаная и холоднокатаная сталь доступна в широком диапазоне форм, включая пруток, трубы, листы и пластины. Мы можем разрезать металл в точном соответствии с вашими требованиями.

Посетите одно из наших 80+ офисов в Северной Америке сегодня.

Энергетическая усталостная характеристика стали C45, подвергнутой циклическому изгибу

[1] К. Смит., П. Уотсон, Т. Топпер, Функция “напряжение-деформация” для усталости металлов. J. Материалы. 5 (1970) 767-779.

[2] Э. Маха, Обзор основанных на энергии критериев многоосного усталостного разрушения, Архив машиностроения.XLVIII (2001) 71-101.

[3] Д. Розумек, З. Марчиняк., К.Т. Лахович, Энергетический подход к расчету усталостной долговечности при непропорциональном изгибе с кручением, Int. J. Усталости. 32 (2010) 1343-1350.

DOI: 10.1016 / j.ijfatigue.2010.02.007

[4] Д.Розумек, З. Марчиняк, Усталостные свойства образцов с надрезом из стали FeP04, Материаловедение. 47 (2012) 462-469.

DOI: 10.1007 / s11003-012-9417-x

[5] С.С. Мэнсон, Поведение материалов в условиях термического напряжения, NACA TN-2933 (1953).

[6] Л.Ф. Коффин, Исследование влияния циклических термических напряжений на пластичный металл, Пер. ASME 76 (1954) 931-950.

[7] О.H. Basquin, Экспериментальный закон испытания на выносливость, Proc. ASTM, Phildelphia, 10 (1910) 625-630.

[8] W.Będkowski, E. Macha, J. Słowik, Усталостные характеристики материалов с контролируемым параметром плотности энергии деформации, Архив машиностроения. LI (2004) 437-451.

[9] Э.Macha, J. Słowik, R. Pawliczek, Энергетическая характеристика усталостного поведения циклически нестабильных материалов, Явления твердого тела. 147-149 (2009) 512-517.

DOI: 10.4028 / www.scientific.net / ssp.147-149.512

[10] Л.Каспржичак, Э. Маха, З. Марчиняк, Система управления энергетическими параметрами силовой машины для испытаний материалов при циклическом изгибе и кручении, Явления твердого тела. 198 (2013) 489-494.

DOI: 10.4028 / www.scientific.net / ssp.198.489

[11] ЧАС.Achtelik, D. Rozumek, Z. Marciniak, E. Macha, C.T. Лахович, Патент PL3-A1. (2013).

Износ

, характерный для слоя наплавки из сплава Стеллит 6 с помощью процессов плазменно-дуговой наплавки

Микроструктура и износостойкость наплавочного слоя из сплава Стеллит 6 при двух различных температурах (комнатная температура и 300 ° C) были исследованы с помощью процессов плазменно-дуговой наплавки стали Q235.Для характеристики износостойкости были проведены трибологические испытания. Микроструктура покрытия из сплава Стеллит 6 в основном состоит из α -Co и (Cr, Fe) 7 C 3 фаз. Коэффициент трения сплавов Stellite 6 незначительно колеблется при различных нагрузках при 300 ° C. Оксидный слой образуется на поверхности покрытия и служит специальной смазкой во время испытания на износ. Абразивный износ является доминирующим механизмом при комнатной температуре, а микроплавка и пластичность являются ключевыми механизмами износа при 300 ° C.

1. Введение

Сплавы на основе кобальта (кобальта) (например, стеллитовый сплав) широко используются в среде износа из-за их хорошей устойчивости к коррозии, износу и истиранию [1]. Стеллитовые системы – это сплавы Co, которые в основном содержат легирующие элементы, такие как вольфрам (W), хром (Cr), молибден (Mo) и некоторое количество углерода (C). Cr является основным легирующим элементом, который реагирует с C с образованием междендритного карбида. Легирующие элементы W и Mo также реагируют с C с образованием карбида в виде вторичных частиц.Упрочнение сплавов на основе Co карбидами в твердом растворе может быть легко достигнуто. Распределение, размер и форма карбидов определяются условиями обработки и влияют на механические свойства и твердость [2–5].

Сплавы Stellite 6 с покрытием из нержавеющей стали используются для клапанов в условиях высоких температур и высокого давления, где материал может плавиться, ползать или разрушаться. В нашем приложении рабочая температура составляет от 250 ° C до 300 ° C [6]. В таком применении сплавы играют важную роль в предотвращении различных факторов износа, влияющих на поверхность скольжения.Кислород в воздухе – это нормальный элемент, который реагирует с легирующими элементами, особенно при высоких температурах [7–10]. Образование оксидов играет важную роль в процессе изнашивания [11]. Легирующий элемент Cr показывает хорошую износостойкость, коррозионную стойкость и жаропрочность. Фонтальво и соавторы продемонстрировали, что оксиды, образующиеся при высоких температурах, уменьшают износ и служат защитной пленкой между контактирующими областями [12, 13]. Износостойкость сплавов Stellite 6 была относительно лучшей при 750 ° C.Медленно растущие оксиды на сплавах Стеллита 6 приводят к образованию защитной пленки с хорошей износостойкостью [14]. Ван и соавторы продемонстрировали, что оксидная окалина увеличивается при добавлении иттрия к стеллитовому сплаву для улучшения характеристик износа при 650 ° C. Когда поверхность сплава Стеллит 6 подвергалась износу, тепловому расширению и окислению, оксидная пленка разрушалась. Свежая поверхность обнажилась, и окисление ускорилось. В конечном итоге фильм был полностью разорван. Этот процесс был повторен, и износостойкость снизилась.Следовательно, прочность связи оксидной пленки является ключевым фактором, влияющим на общее сопротивление при повышенной температуре [15–22].

Это исследование направлено на оценку влияния температуры на износостойкость, которая является рабочей температурой клапана в реальных условиях эксплуатации. Обсуждаются процесс и механизм износа при комнатной температуре и 300 ° C.

2. Методика эксперимента
2.1. Приготовление наплавки Stellite 6 Hardfacing

В качестве подложки использовалась низкоуглеродистая сталь Q235, а сплавы Stellite 6 сваривались дуговой сваркой с переносом плазмы (PTAW).Состав (мас.%) Мягкой стали Q235: 0,16 C, 0,53 Mn, 0,30 Si, <0,045 P, <0,055 S и сбалансированное Fe. Состав порошка Stellite 6 приведен в таблице 1. Поверхность матрицы очищали ацетоном и промывали дистиллированной водой для удаления остатков и жира. После этого матрицу сушили на воздухе. Порошок Stellite 6 был предварительно окрашен на поверхность подложки. Толщина порошка составляла примерно 2 мм. Покрытие готовили методом PTAW при силе тока 150 А.


Состав C Cr Si W Fe Mo Ni Mn Co Масса

Co в процентах 1,15 29,00 1,10 4,00 3,00 1,00 3,00 0,50 Bal

2. Микроструктурная характеристика.

Низкоуглеродистая сталь Q235 с покрытием разрезалась вдоль перпендикулярного направления линии соприкосновения основы и покрытия. Затем режущую поверхность покрытия покрывали бакелитом. Поверхность образцов была отполирована наждачной бумагой SiC до 1 500 # с последующей полировкой тампона с порошком оксида алюминия. Затем поверхность промывали дистиллированной водой и обрабатывали ультразвуком на водяной бане в течение 5 мин. После этого микроструктура покрытия протравливалась азотно-соляной кислотой.Изображения покрытия до и после износа были получены с помощью оптического микроскопа и сканирующего электронного микроскопа (SEM). Была проанализирована морфология покрытия, снятого с разных пятен. Рентгеновскую дифракцию (XRD) использовали для характеристики фазового анализа, проведенного с использованием оборудования XRD с излучением Cu K α . Шаг 0,02 ° был использован для сканирования 2 θ градусов от 30 ° до 100 °. Образец для XRD-теста был предварительно протравлен в 10 мас.% Щавелевой кислоты в течение 90 с при потенциале поляризации анода 6 В при комнатной температуре.

2.3. Испытание на износостойкость

Испытание на износ проводилось с помощью прибора для испытания на трение-износ УМТ-2 (США). Из покрытия были взяты образцы размерами 15 мм × 15 мм × 4 мм. Поверхность образцов полировалась и очищалась ацетоном и дистиллированной водой. Трибологические испытания проводились с использованием трибометра «шар на диске» с нагрузкой 10 Н при различных температурах. Испытания проводились с использованием сферической стали C45 (ASTM 1045) диаметром 9,38 мм.Скорость образца относительно мяча составляла 2,5 см с −1 за 30 мин. После испытания морфология следа износа была проверена с помощью SEM и конфокального лазерного сканера (LEXTOLS400). Затем скорость износа была рассчитана с использованием, где – длина следа износа, – средняя площадь потери износа, – нагрузка и – расстояние износа. После экспериментов поверхность образцов характеризовали с помощью СЭМ.

3. Результаты и обсуждение
3.1. XRD-анализ сплавов Stellite 6

Результаты XRD-анализа покрытия из сплава Stellite 6 показаны на рисунке 1.Фазы нанесенного покрытия: α -Co и M 7 C 6 (M = Fe, Cr), которые определяются путем сравнения с параметром решетки стандартных карт JCPDS. Наибольшая интенсивность пиков зафиксирована для фаз α -Co и (Cr, Fe) 7 C 3 , и пики этих двух фаз перекрываются. Присутствие (Cr, Fe) 7 C 3 [23] играет ключевую роль в повышении твердости покрытия [24].


3.2. Микроструктура наплавочного покрытия из сплава Stellite 6

На рис. 2 показана микроструктура покрытия от подложки до поверхности. Обычно микроструктура сварочного покрытия делится на три части: зону разбавления, переходную и мелкозернистую зоны [25]. На рис. 2 (а) показана линия сплавления между подложкой и покрытием. Зона разбавления покрытия показана красными прямоугольниками на рисунке 2 (b). Над подложкой наблюдались плоские кристаллические структуры. Эти плоские кристаллические структуры контактируют с зернами подложки.Новые зерна обычно образуются из нерасплавленного зерна. Размер новых зерен увеличивается вдоль исходного направления кристалла. Затем столбчатый кристалл образуется в перпендикулярном направлении линии плавления, как показано на рисунке 2 (c). По мере затвердевания верхняя часть покрытия вокруг поверхности становится мелкозернистой зоной, как показано на рисунке 2 (d). В мелкозернистых областях кристалл демонстрирует разнонаправленный рост.

Ячеисто-дендритные карбиды окружены твердым раствором Co и Cr, который затвердевает по направлению к поверхности, как показано на рисунке 3.Микроструктура покрытия однородная. Дендритные карбиды могут играть ключевую роль в повышении твердости и износостойкости покрытия. Эти результаты аналогичны результатам, полученным Xu et al. [26].

3.3. Трибологические испытания сплавов стеллита 6

На рис. 4 показано изменение коэффициента трения в зависимости от времени скольжения при различных нагрузках. Рисунки 4 (a) и 4 (b) показывают, что коэффициент трения первоначально быстро увеличивается при комнатной температуре и 300 ° C.С увеличением расстояния скорость износа незначительно уменьшается с флуктуациями и достигает стабильного состояния [27]. Как правило, в стабильном состоянии заметных изменений коэффициента трения при малых нагрузках не наблюдается. Рисунок 4 (а) показывает, что коэффициент трения сплавов Стеллит 6 уменьшается с увеличением нагрузок. При низких нагрузках эффективность трения аналогична из-за твердых фаз сплава Stellite 6. Когда достигается критическое значение, эффективность трения, очевидно, уменьшается, как показано на рисунке 4 (а).Коэффициент трения при высокой температуре увеличивается и достигает стабильного состояния без значительных затрат времени. Значения коэффициента трения при комнатной температуре выше, чем при 300 ° C, так как твердость покрытия снижается, а его окисляемость увеличивается [28]. Механические свойства играют ключевую роль в увеличении коэффициента трения покрытия, поскольку твердость существенно влияет на износостойкость сплава Стеллит 6 при комнатной и умеренных температурах [29, 30].При повышенной температуре, с понижением твердости и механических свойств изношенная поверхность с тонким слоем и слабоприлипающими оксидными пленками легко разрушается [31, 32]. В таких условиях механизм износа будет связан с температурой. Скорость износа покрытий может быть определена на основе следующего соотношения:, где – нормальная нагрузка, – расстояние скольжения, – объем материалов, изношенных во время испытания.

Изменения скорости износа покрытия при комнатной температуре и 300 ° C при различных нагрузках показаны на рисунке 5.С увеличением нагрузок скорость износа покрытия из сплава стеллита увеличивается. Скорость износа достигает 250 × 10 −6 мм N −1 · м −1 при нанесении 15 Н на покрытие из сплава Стеллит 6. Однако при нанесении при 300 ° C скорость износа достигает примерно 500 × 10 −6 мм · N −1 · м −1 при различных нагрузках. При комнатной температуре на скорость износа влияют нагрузки. Напротив, при 300 ° C скорость износа относительно стабильна без каких-либо явных изменений.Эти результаты совпадают с результатами по коэффициенту трения.


3.4. Морфология покрытия из стеллита 6 после испытания на износ

На рис. 6 показаны СЭМ-изображения покрытия из сплава Стеллит 6 при комнатной температуре и 300 ° C. Примечательно, что на поверхности покрытия при комнатной температуре накапливается большое количество частиц по сравнению с морфологией покрытия при 300 ° C после трибологического испытания, как показано на рисунках 2 (a) и 2 (b). Эти частицы не могут образовывать защитный слой и вызывают увеличение коэффициента трения, что увеличивает скорость износа.На поверхности покрытия также появляются рубцы от вспашки. Коэффициент трения покрытия уменьшается с увеличением приложенной нагрузки из-за большого количества частиц, как показано на рисунке 4 (а). В этом случае абразивный износ является ключевым механизмом при комнатной температуре.

На рисунках 6 (c) и 6 (d) показана гладкая морфология покрытия. Износ и пластическая деформация во время испытания наблюдаются по СЭМ-изображениям линии износа покрытия. Гладкая поверхность следа износа подвергается окислению при 300 ° C.Оксидный слой можно использовать в качестве смазки. Моталлебзаде и др. сообщили, что механизмами износа сплава Стеллит 12 являются пластичность при 300 ° C и окислительный износ при 700 ° C [33]. Коэффициент трения при 300 ° C ниже, чем при комнатной температуре, что совпадает с результатами измерения скорости износа, показанными на рисунке 5. Поверхности имеют ламинарную форму, и на поверхности не наблюдается явных твердых выделений. В этом случае микроплавка и пластичность являются ключевыми механизмами изнашивания при 300 ° C [34, 35].На рисунках 6 (e) и 6 (f) показан анализ с помощью энергодисперсионной рентгеновской спектроскопии (EDS) изношенной поверхности сплава Stellite 6 при 300 ° C. Образование оксидов, таких как Fe 2 O 3 , CrO, CoO и Cr 2 O 3 , при повышенной температуре показано на рисунках 6 (e) и 6 (f). Содержание окислительного слоя значительно увеличивается с увеличением нагрузок, что свидетельствует о большем окислении СоО во время испытания на скольжение.

На рис. 7 показана трехмерная морфология покрытия из сплава Стеллит 6 после трибологического испытания.На изношенной поверхности покрытий видны большие следы износа. Вдоль трека наблюдается множество плоских плоскостей, которые представляют собой твердые оксидные компактные слои. При низкой нагрузке на поверхности наблюдается множество горных рельефов при приложенной нагрузке 15 Н. Поверхность покрытия после испытания на износ шероховатая. Профили трех образцов при различных приложенных нагрузках аналогичны и совпадают с результатами измерения скорости износа, показанными на рисунке 5.

4. Заключение

Характеристики износостойкости скольжения покрытия из сплава Stellite 6 на нержавеющих сталях Q235 при комнатной температуре и 300 °. C сравнивали.Коэффициент трения покрытия при комнатной температуре выше, чем при 300 ° C. С увеличением приложенной нагрузки коэффициент трения сплава Стеллит 6 увеличивается при комнатной температуре. Однако при 300 ° C коэффициент трения сплава Stellite 6 незначительно колеблется при различных приложенных нагрузках. Покрытие после износа скольжения при 300 ° С подвергается окислению. Оксидный слой можно использовать в качестве смазки. Скорость износа при 300 ° C выше, чем при комнатной температуре из-за микроплавки.Основными механизмами износа при 300 ° C являются микроплафетка и пластичность.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Благодарности

Авторы хотели бы выразить свою искреннюю благодарность Стартовому проекту докторских научных исследований Университета науки и технологий Цзянсу (№ 10621) и Программе науки и технологий провинции Цзянсу (№ BY2015065-01, BE2015144) , и BE2015145) за финансовую поддержку.

Определение опасных отходов: перечисленные, характерные и смешанные радиологические отходы

P001 1 81-81-2 2H-1-Бензопиран-2-он, 4-гидрокси-3- (3-оксо-1-фенилбутил) – & соли, если они присутствуют в концентрациях более 0,3%
P001 1 81-81-2 Варфарин и соли, если они присутствуют в концентрациях более 0,3%
P002 591-08-2 Ацетамид, – (аминотиоксометил) –
P002 591-08-2 1-ацетил-2-тиомочевина
P003 107-02-8 Акролеин
P003 107-02-8 2-пропенал
P004 309-00-2 Альдрин
P004 309-00-2 1,4,5,8-Диметанонафталин, 1,2,3,4,10,10-гекса-хлор-1,4,4a, 5,8,8a, -гексагидро-, (1альфа, 4альфа, 4abeta, 5альфа, 8альфа, 8абета) –
P005 107-18-6 Аллиловый спирт
P005 107-18-6 2- Пропен-1-ол
P006 20859-73-8 Фосфид алюминия (R, T)
P007 2763-96-4 5- (Аминометил) -3-изоксазолол
P007 2763-96-4 3 (2H) -изоксазолон, 5- (аминометил) –
P008 504-24-5 4-аминопиридин
P008 504-24-5 4-пиридинамин
P009 131-74-8 Пикрат аммония (R)
P009 131-74-8 2,4,6-тринитро- аммониевая соль фенола (R)
P010 7778-39-4 Мышьяковая кислота H 3 AsO 4
P011 1303-28-2 оксид мышьяка As 2 O 5
P011 1303-28-2 Пятиокись мышьяка
P012 1327-53-3 оксид мышьяка As 2 O 3
P012 1327-53-3 Триоксид мышьяка
P013 542-62-1 Цианид бария
P014 108-98-5 Бензентиол
P014 108-98-5 Тиофенол
P015 7440-41-7 Бериллиевый порошок
P016 542-88-1 Дихлорметиловый эфир
P016 542-88-1 Метан, оксибис [хлор-
P017 598-31-2 Бромацетон
P017 598-31-2 2-пропанон, 1-бром-
P018 357-57-3 Бруцин
P018 357-57-3 Стрихнидин-10-он, 2,3-диметокси-
P020 88-85-7 Диносеб
P020 88-85-7 Фенол, 2- (1-метилпропил) -4,6-динитро-
P021 592-01-8 Цианид кальция
P021 592-01-8 Цианид кальция Ca (CN) 2
P022 75-15-0 Сероуглерод
P023 107-20-0 Ацетальдегид, хлор-
P023 107-20-0 Хлорацетальдегид
P024 106-47-8 бензоламин, 4-хлор-
P024 106-47-8 п-хлоранилин
P026 5344-82-1 1- (о-Хлорфенил) тиомочевина
P026 5344-82-1 Тиомочевина, (2-хлорфенил) –
P027 542-76-7 3-хлорпропионитрил
P027 542-76-7 Пропаннитрил, 3-хлор-
P028 100-44-7 Бензол, (хлорметил) –
P028 100-44-7 Бензилхлорид
P029 544-92-3 Цианид меди
P029 544-92-3 Цианид меди Cu (CN)
P030 Цианиды (растворимые цианидные соли), если не указано иное
P031 460-19-5 Цианоген
P031 460-19-5 этандинитрил
P033 506-77-4 Хлорид цианогена
P033 506-77-4 Хлорид цианогена (CN) Cl
P034 131-89-5 2-Циклогексил-4,6-динитрофенол
P034 131-89-5 Фенол, 2-циклогексил-4,6-динитро-
P036 696-28-6 Жестокий дихлорид, фенил-
P036 696-28-6 Дихлорфениларсин
P037 60-57-1 Дильдрин
P037 60-57-1 2,7: 3,6-Диметанонафт [2,3-b] оксирен, 3,4,5,6,9,9-гексахлор-1a, 2,2a, 3,6,6a, 7,7a-октагидро -, (1аальфа, 2бета, 2аальфа, 3бета, 6бета, 6аальфа, 7бета, 7аальфа) –
P038 692-42-2 Арсин, диэтил-
P038 692-42-2 Диэтиларсин
P039 298-04-4 Дисульфотон
P039 298-04-4 O, O-диэтил-S- [2- (этилтио) этил] сложный эфир фосфородитиевой кислоты
P040 297-97-2 O, O-диэтил-O-пиразинилфосфоротиоат
P040 297-97-2 Фосфоротиевая кислота, O, O-диэтил-O-пиразиниловый эфир
P041 311-45-5 Диэтил-п-нитрофенилфосфат
P041 311-45-5 Диэтил-4-нитрофениловый эфир фосфорной кислоты
P042 51-43-4 1,2-бензолдиол, 4- [1-гидрокси-2- (метиламино) этил] -, (R) –
P042 51-43-4 Адреналин
P043 55-91-4 Диизопропилфторфосфат (DFP)
P043 55-91-4 Бис (1-метилэтиловый) эфир фосфорофтористой кислоты
P044 60-51-5 Диметоат
P044 60-51-5 O, O-диметил-S- [2- (метиламино) -2-оксоэтил] сложный эфир фосфородитиевой кислоты
P045 39196-18-4 2-бутанон, 3,3-диметил-1- (метилтио) -, O – [(метиламино) карбонил] оксим
P045 39196-18-4 Тиофанокс
P046 122-09-8 Бензолэтанамин, альфа, альфа-диметил-
P046 122-09-8 альфа, альфа-диметилфенэтиламин
P047 1 534-52-1 4,6-динитро-о-крезол и соли
P047 1 534-52-1 Фенол, 2-метил-4,6-динитро- и соли
P048 51-28-5 2,4-Динитрофенол
P048 51-28-5 Фенол, 2,4-динитро-
P049 541-53-7 Дитиобиурет
P049 541-53-7 Тиоимидодикарбонат диамид [(H 2 N) C (S)] 2 NH
P050 115-29-7 Эндосульфан
P050 115-29-7 6,9-Метано-2,4,3-бензодиоксатиепин, 6,7,8,9,10,10-гексахлор-1,5,5a, 6,9,9a-гексагидро-, 3-оксид
P051 1 72-20-8 2,7: 3,6-Диметанонафт [2,3-b] оксирен, 3,4,5,6,9,9-гексахлор-1a, 2,2a, 3,6,6a, 7,7a-октагидро -, (1аальфа, 2бета, 2абета, 3альфа, 6альфа, 6абета, 7бета, 7аальфа) – и метаболиты
P051 72-20-8 Эндрин
P051 72-20-8 Эндрин и метаболиты
P054 151-56-4 Азиридин
P054 151-56-4 Этиленимин
P056 7782-41-4 Фтор
P057 640-19-7 Ацетамид, 2-фтор-
P057 640-19-7 Фторацетамид
P058 62-74-8 Уксусная кислота фторсодержащая натриевая соль
P058 62-74-8 Фторуксусная кислота, натриевая соль
P059 76-44-8 Гептахлор
P059 76-44-8 4,7-Метано-1H-инден, 1,4,5,6,7,8,8-гептахлор-3a, 4,7,7a-тетрагидро-
P060 465-73-6 1,4,5,8-Диметанонафталин, 1,2,3,4,10,10-гекса-хлор-1,4,4a, 5,8,8a-гексагидро-, (1альфа, 4альфа, 4abeta, 5beta , 8beta, 8abeta) –
P060 465-73-6 Изодрин
P062 757-58-4 Гексаэтилтетрафосфат
P062 757-58-4 Тетрафосфорная кислота, гексаэтиловый эфир
P063 74-90-8 Синильная кислота
P063 74-90-8 Цианистый водород
P064 624-83-9 Метан изоцианато-
P064 624-83-9 Метилизоцианат
P065 628-86-4 Фульминовая кислота, соль ртути (2 +) (R, T)
P065 628-86-4 Молниеносная ртуть (R, T)
P066 16752-77-5 Этанимидотиовая кислота, N- [[(метиламино) карбонил] окси] -, метиловый эфир
P066 16752-77-5 Метомил
P067 75-55-8 Азиридин, 2-метил-
P067 75-55-8 1,2-пропиленимин
P068 60-34-4 Гидразин, метил-
P068 60-34-4 Метилгидразин
P069 75-86-5 2-метилактонитрил
P069 75-86-5 Пропаннитрил, 2-гидрокси-2-метил-
P070 116-06-3 Альдикарб
P070 116-06-3 Пропанал, 2-метил-2- (метилтио) -, O – [(метиламино) карбонил] оксим
P071 298-00-0 Метилпаратион
P071 298-00-0 сложный эфир O, O, -диметил O- (4-нитрофенил) фосфоротиевой кислоты
P072 86-88-4 альфа-нафтилтиомочевина
P072 86-88-4 Тиомочевина, 1-нафталинил-
P073 13463-39-3 Карбонил никеля
P073 13463-39-3 Карбонил никеля Ni (CO) 4 , (Т-4) –
P074 557-19-7 Цианид никеля
P074 557-19-7 Цианид никеля Ni (CN) 2
P075 1 54-11-5 Никотин и соли
P075 1 54-11-5 Пиридин, 3- (1-метил-2-пирролидинил) -, (S) – и соли
P076 10102-43-9 Оксид азота
P076 10102-43-9 Оксид азота NO
P077 100-01-6 бензоламин, 4-нитро-
P077 100-01-6 п-Нитроанилин
P078 10102-44-0 Двуокись азота
P078 10102-44-0 Оксид азота NO 2
P081 55-63-0 Нитроглицерин (R)
P081 55-63-0 1,2,3-пропанетриол, тринитрат (R)
P082 62-75-9 Метанамин, -метил-N-нитрозо-
P082 62-75-9 N-нитрозодиметиламин
P084 4549-40-0 N-нитрозометилвиниламин
P084 4549-40-0 Виниламин, -метил-N-нитрозо-
P085 152-16-9 Дифосфорамид, октаметил-
P085 152-16-9 Октаметилпирофосфорамид
P087 20816-12-0 Оксид осмия OsO 4 , (Т-4) –
P087 20816-12-0 четырехокись осмия
P088 145-73-3 Endothall
P088 145-73-3 7-оксабицикло [2.2.1] гептан-2,3-дикарбоновая кислота
P089 56-38-2 Паратион
P089 56-38-2 сложный эфир O, O-диэтил-O- (4-нитрофенил) фосфоротиевой кислоты
P092 62-38-4 Ртуть, (ацетато-O) фенил-
P092 62-38-4 Ацетат фенилртути
P093 103-85-5 Фенилтиомочевина
P093 103-85-5 Тиомочевина, фенил-
P094 298-02-2 Форат
P094 298-02-2 О, О-диэтил-S – [(этилтио) метил] сложный эфир фосфородитиевой кислоты
P095 75-44-5 Дихлорид углерода
P095 75-44-5 Фосген
P096 7803-51-2 Фосфид водорода
P096 7803-51-2 фосфин
P097 52-85-7 Фамфур
P097 52-85-7 Фосфоротиевая кислота, O- [4 – [(диметиламино) сульфонил] фенил] O, O-диметиловый эфир
P098 151-50-8 Цианид калия
P098 151-50-8 Цианид калия K (CN)
P099 506-61-6 Аргентат (1-), бис (циано-C) -, калий
P099 506-61-6 Цианид серебра калия
P101 107-12-0 Этилцианид
P101 107-12-0 Пропаннитрил
P102 107-19-7 Спирт пропаргиловый
P102 107-19-7 2-пропин-1-ол
P103 630-10-4 Селеномочевина
P104 506-64-9 Цианид серебра
P104 506-64-9 Цианид серебра Ag (CN)
P105 26628-22-8 Азид натрия
P106 143-33-9 Цианид натрия
P106 143-33-9 Цианид натрия Na (CN)
P108 1 157-24-9 Стрихнидин-10-он и соли
P108 1 157-24-9 Стрихнин и соли
P109 3689-24-5 Тетраэтилдитиопирофосфат
P109 3689-24-5 Тиодифосфорная кислота, сложный тетраэтиловый эфир
P110 78-00-2 Плюмбан, тетраэтил-
P110 78-00-2 Тетраэтилсвинец
P111 107-49-3 Тетраэтиловый эфир дифосфорной кислоты
P111 107-49-3 Тетраэтилпирофосфат
P112 509-14-8 Метан тетранитро- (R)
P112 509-14-8 Тетранитрометан (R)
P113 1314-32-5 Оксид таллина
P113 1314-32-5 Оксид таллия Tl 2 O 3
P114 12039-52-0 Селеновая кислота, диталлиевая (1 +) соль
P114 12039-52-0 Селенит таллия (I)
P115 7446-18-6 Серная кислота, соль диталлия (1+)
P115 7446-18-6 Сульфат таллия (I)
P116 79-19-6 Гидразинкарботиоамид
P116 79-19-6 Тиосемикарбазид
P118 75-70-7 Метантиол, трихлор-
P118 75-70-7 Трихлорметантиол
P119 7803-55-6 Ванадат аммония
P119 7803-55-6 Ванадовая кислота, аммониевая соль
P120 1314-62-1 Оксид ванадия V 2 O 5
P120 1314-62-1 Пятиокись ванадия
P121 557-21-1 Цианид цинка
P121 557-21-1 Цианид цинка Zn (CN) 2
P122 1314-84-7 Фосфид цинка Zn 3 P 2 , если он присутствует в концентрациях более 10% (R, T)
P123 8001-35-2 Токсафен
P127 1563-66-2 7-Бензофуранол, 2,3-дигидро-2,2-диметил-, метилкарбамат.
P127 1563-66-2 Карбофуран
P128 315-18-4 мексакарбат
P128 315-18-4 Фенол, 4- (диметиламино) -3,5-диметил-, метилкарбамат (сложный эфир)
P185 26419-73-8 1,3-Дитиолан-2-карбоксальдегид, 2,4-диметил-, O – [(метиламино) карбонил] оксим.
P185 26419-73-8 Тирпате
P188 57-64-7 Бензойная кислота, 2-гидрокси-, компд.с (3aS-цис) -1,2,3,3a, 8,8a-гексагидро-1,3a, 8-триметилпирроло [2,3-b] индол-5-илметилкарбаматным эфиром (1: 1)
P188 57-64-7 Физостигмина салицилат
P189 55285-14-8 [(дибутиламино) тио] метил-, 2,3-дигидро-2,2-диметил-7-бензофураниловый эфир карбаминовой кислоты
P189 55285-14-8 Карбосульфан
P190 1129-41-5 Карбаминовая кислота, метил-, 3-метилфениловый эфир
P190 1129-41-5 Метолкарб
P191 644-64-4 Карбаминовая кислота, диметил-, 1 – [(диметиламино) карбонил] -5-метил-1H-пиразол-3-иловый эфир
P191 644-64-4 Диметилан
P192 119-38-0 Диметил-, 3-метил-1- (1-метилэтил) -1Н-пиразол-5-иловый эфир карбаминовой кислоты
P192 119-38-0 Изолан
P194 23135-22-0 Этанимидиовая кислота, 2- (диметиламино) -N- [[(метиламино) карбонил] окси] -2-оксо-, метиловый эфир
P194 23135-22-0 Оксамил
P196 15339-36-3 Марганец, бис (диметилкарбамодитиоато-S, S ‘) -,
P196 15339-36-3 Диметилдитиокарбамат марганца
P197 17702-57-7 Formparanate
P197 17702-57-7 Метанимидамид, N, N-диметил-N ‘- [2-метил-4- [[(метиламино) карбонил] окси] фенил] –
P198 23422-53-9 Форметанат гидрохлорид
P198 23422-53-9 Метанимидамид, N, N-диметил-N ‘- [3- [[(метиламино) карбонил] окси] фенил] моногидрохлорид
P199 2032-65-7 Метиокарб
P199 2032-65-7 Фенол, (3,5-диметил-4- (метилтио) -, метилкарбамат
P201 2631-37-0 Фенол, 3-метил-5- (1-метилэтил) -, карбамат метила
P201 2631-37-0 Promecarb
P202 64-00-6 м-Куменил метилкарбамат
P202 64-00-6 3-изопропилфенил-N-метилкарбамат
P202 64-00-6 Фенол, 3- (1-метилэтил) -, карбамат метила
P203 1646-88-4 Сульфон альдикарба
P203 1646-88-4 Пропанал, 2-метил-2- (метилсульфонил) -, O – [(метиламино) карбонил] оксим
P204 57-47-6 Физостигмин
P204 57-47-6 Пирроло [2,3-b] индол-5-ол, 1,2,3,3a, 8,8a-гексагидро-1,3a, 8-триметил-, метилкарбамат (сложный эфир), (3aS-цис) –
P205 137-30-4 Цинк, бис (диметилкарбамодитиоато-S, S ‘) -,
P205 137-30-4 Зирам
U001 75-07-0 Ацетальдегид (I)
U001 75-07-0 Этаналь (I)
U002 67-64-1 Ацетон (I)
U002 67-64-1 2-пропанон (I)
U003 75-05-8 Ацетонитрил (I, T)
U004 98-86-2 Ацетофенон
U004 98-86-2 этанон, 1-фенил-
U005 53-96-3 Ацетамид, -9H-флуорен-2-ил-
U005 53-96-3 2-ацетиламинофлуорен
U006 75-36-5 Ацетилхлорид (C, R, T)
U007 79-06-1 Акриламид
U007 79-06-1 2-пропенамид
U008 79-10-7 Акриловая кислота (I)
U008 79-10-7 2-пропеновая кислота (I)
U009 107-13-1 Акрилонитрил
U009 107-13-1 2-пропеннитрил
U010 50-07-7 Азирино [2 ‘, 3’: 3,4] пирроло [1,2-a] индол-4,7-дион, 6-амино-8- [[(аминокарбонил) окси] метил] -1,1a, 2 , 8,8a, 8b-гексагидро-8a-метокси-5-метил-, [1aS- (1aalpha, 8beta, 8aalpha, 8balpha)] –
U010 50-07-7 Митомицин С
U011 61-82-5 Амитрол
U011 61-82-5 1H-1,2,4-Триазол-3-амин
U012 62-53-3 Анилин (I, T)
U012 62-53-3 Бензоламин (I, T)
U014 492-80-8 Аурамин
U014 492-80-8 Бензоламин, 4,4′-карбонимидоилбис [N, N-диметил-
U015 115-02-6 Азасерин
U015 115-02-6 L-серин, диазоацетат (сложный эфир)
U016 225-51-4 бенз [с] акридин
U017 98-87-3 Бензал хлорид
U017 98-87-3 Бензол, (дихлорметил) –
U018 56-55-3 Benz [a] антрацен
U019 71-43-2 Бензол (I, T)
U020 98-09-9 Хлорид бензолсульфоновой кислоты (C, R)
U020 98-09-9 Бензолсульфонилхлорид (C, R)
U021 92-87-5 Бензидин
U021 92-87-5 [1,1′-Бифенил] -4,4′-диамин
U022 50-32-8 Бензо [а] пирен
U023 98-07-7 Бензол, (трихлорметил) –
U023 98-07-7 Бензотрихлорид (C, R, T)
U024 111-91-1 Дихлорметоксиэтан
U024 111-91-1 Этан, 1,1 ‘- [метиленбис (окси)] бис [2-хлор-
U025 111-44-4 Дихлорэтиловый эфир
U025 111-44-4 Этан, 1,1′-оксибис [2-хлор-
U026 494-03-1 Хлорнафазин
U026 494-03-1 Нафталенамин, N, N’-бис (2-хлорэтил) –
U027 108-60-1 Дихлоризопропиловый эфир
U027 108-60-1 Пропан, 2,2′-оксибис [2-хлор-
U028 117-81-7 Бис (2-этилгексил) сложный эфир 1,2-бензолдикарбоновой кислоты
U028 117-81-7 Диэтилгексилфталат
U029 74-83-9 Метан, бром-
U029 74-83-9 Бромистый метил
U030 101-55-3 Бензол, 1-бром-4-фенокси-
U030 101-55-3 4-бромфенилфениловый эфир
U031 71-36-3 1-бутанол (I)
U031 71-36-3 н-Бутиловый спирт (I)
U032 13765-19-0 Хромат кальция
U032 13765-19-0 Хромовая кислота H 2 CrO 4 , кальциевая соль
U033 353-50-4 Дифторид углерода
U033 353-50-4 Оксифторид углерода (R, T)
U034 75-87-6 Ацетальдегид, трихлор-
U034 75-87-6 Хлорал
U035 305-03-3 Бензолбутановая кислота, 4- [бис (2-хлорэтил) амино] –
U035 305-03-3 Хлорамбуцил
U036 57-74-9 Хлордан, альфа- и гамма-изомеры
U036 57-74-9 4,7-метано-1H-инден, 1,2,4,5,6,7,8,8-октахлор-2,3,3a, 4,7,7a-гексагидро-
U037 108-90-7 Бензол, хлор-
U037 108-90-7 Хлорбензол
U038 510-15-6 Бензолуксусная кислота, 4-хлор-альфа (4-хлорфенил) -альфа-гидрокси-, этиловый эфир
U038 510-15-6 Хлорбензилат
U039 59-50-7 п-хлор-м-крезол
U039 59-50-7 Фенол, 4-хлор-3-метил-
U041 106-89-8 эпихлоргидрин
U041 106-89-8 Оксиран, (хлорметил) –
U042 110-75-8 2-хлорэтилвиниловый эфир
U042 110-75-8 Этен, (2-хлорэтокси) –
U043 75-01-4 Этен, хлор-
U043 75-01-4 Винилхлорид
U044 67-66-3 Хлороформ
U044 67-66-3 Метан трихлор-
U045 74-87-3 Метан, хлор- (I, T)
U045 74-87-3 Метилхлорид (I, T)
U046 107-30-2 Хлорметилметиловый эфир
U046 107-30-2 Метан, хлорметокси-
U047 91-58-7 бета-хлорнафталин
U047 91-58-7 Нафталин, 2-хлор-
U048 95-57-8 о-хлорфенол
U048 95-57-8 Фенол, 2-хлор-
U049 3165-93-3 Бензоламин, 4-хлор-2-метил-, гидрохлорид
U049 3165-93-3 4-хлор-о-толуидин, гидрохлорид
U050 218-01-9 Хризен
U051 Креозот
U052 1319-77-3 Крезол (Крезиловая кислота)
U052 1319-77-3 Фенол, метил-
U053 4170-30-3 2-бутенал
U053 4170-30-3 Кротоновый альдегид
U055 98-82-8 Бензол, (1-метилэтил) – (I)
U055 98-82-8 Кумол (I)
U056 110-82-7 Бензол гексагидро- (I)
U056 110-82-7 Циклогексан (I)
U057 108-94-1 Циклогексанон (I)
U058 50-18-0 Циклофосфамид
U058 50-18-0 2H-1,3,2-оксазафосфорин-2-амин, N, N-бис (2-хлорэтил) тетрагидро-, 2-оксид
U059 20830-81-3 Дауномицин
U059 20830-81-3 5,12-Нафтацендион, 8-ацетил-10 – [(3-амино-2,3,6-тридеокси) -альфа-L-ликсогексопиранозил) окси] -7,8,9,10-тетрагидро-6 , 8,11-тригидрокси-1-метокси-, (8S-цис) –
U060 72-54-8 Бензол, 1,1 ‘- (2,2-дихлорэтилиден) бис [4-хлор-
U060 72-54-8 DDD
U061 50-29-3 Бензол, 1,1 ‘- (2,2,2-трихлорэтилиден) бис [4-хлор-
U061 50-29-3 ДДТ
U062 2303-16-4 Бис (1-метилэтил) -, карбамотиановая кислота, сложный эфир S- (2,3-дихлор-2-пропенил)
U062 2303-16-4 Diallate
U063 53-70-3 Дибенз [a, h] антрацен
U064 189-55-9 Бензо [первый] пентафен
U064 189-55-9 Дибензо [a, i] пирен
U066 96-12-8 1,2-дибром-3-хлорпропан
U066 96-12-8 Пропан, 1,2-дибром-3-хлор-
U067 106-93-4 Этан, 1,2-дибром-
U067 106-93-4 Дибромид этилена
U068 74-95-3 Метан дибром-
U068 74-95-3 Бромистый метилен
U069 84-74-2 1,2-бензолдикарбоновая кислота, дибутиловый эфир
U069 84-74-2 Дибутилфталат
U070 95-50-1 Бензол, 1,2-дихлор-
U070 95-50-1 о-дихлорбензол
U071 541-73-1 Бензол 1,3-дихлор-
U071 541-73-1 м-Дихлорбензол
U072 106-46-7 Бензол 1,4-дихлор-
U072 106-46-7 п-Дихлорбензол
U073 91-94-1 [1,1′-Бифенил] -4,4′-диамин, 3,3′-дихлор-
U073 91-94-1 3,3′-дихлорбензидин
U074 764-41-0 2-бутен, 1,4-дихлор- (I, T)
U074 764-41-0 1,4-дихлор-2-бутен (I, T)
U075 75-71-8 Дихлордифторметан
U075 75-71-8 Метан дихлордифтор-
U076 75-34-3 Этан, 1,1-дихлор-
U076 75-34-3 Этилиден дихлорид
U077 107-06-2 Этан, 1,2-дихлор-
U077 107-06-2 Этилендихлорид
U078 75-35-4 1,1-дихлорэтилен
U078 75-35-4 Этен, 1,1-дихлор-
U079 156-60-5 1,2-дихлорэтилен
U079 156-60-5 Этен, 1,2-дихлор-, (E) –
U080 75-09-2 Метан, дихлор-
U080 75-09-2 хлористый метилен
U081 120-83-2 2,4-дихлорфенол
U081 120-83-2 Фенол, 2,4-дихлор-
U082 87-65-0 2,6-дихлорфенол
U082 87-65-0 Фенол, 2,6-дихлор-
U083 78-87-5 Пропан, 1,2-дихлор-
U083 78-87-5 Дихлорид пропилена
U084 542-75-6 1,3-дихлорпропен
U084 542-75-6 1-пропен, 1,3-дихлор-
U085 1464-53-5 2,2′-Биоксиран
U085 1464-53-5 1,2: 3,4-Диэпоксибутан (I, T)
U086 ​​ 1615-80-1 N, N’-диэтилгидразин
U086 ​​ 1615-80-1 Гидразин, 1,2-диэтил-
U087 3288-58-2 О, О-диэтил-S-метилдитиофосфат
U087 3288-58-2 Фосфородитиевая кислота, O, O-диэтил-S-метиловый эфир
U088 84-66-2 1,2-бензолдикарбоновая кислота, диэтиловый эфир
U088 84-66-2 Диэтилфталат
U089 56-53-1 Диэтилстильбестерол
U089 56-53-1 Фенол, 4,4 ‘- (1,2-диэтил-1,2-этендиил) бис-, (E) –
U090 94-58-6 1,3-Бензодиоксол, 5-пропил-
U090 94-58-6 Дигидросафрол
U091 119-90-4 [1,1′-Бифенил] -4,4′-диамин, 3,3′-диметокси-
U091 119-90-4 3,3′-диметоксибензидин
U092 124-40-3 Диметиламин (I)
U092 124-40-3 Метанамин, -метил- (I)
U093 60-11-7 Бензоламин, N, N-диметил-4- (фенилазо) –
U093 60-11-7 п-Диметиламиноазобензол
U094 57-97-6 бенз [а] антрацен, 7,12-диметил-
U094 57-97-6 7,12-Диметилбенз [a] антрацен
U095 119-93-7 [1,1′-Бифенил] -4,4′-диамин, 3,3′-диметил-
U095 119-93-7 3,3′-Диметилбензидин
U096 80-15-9 альфа, альфа-диметилбензилгидропероксид (R)
U096 80-15-9 Гидропероксид, 1-метил-1-фенилэтил- (R)
U097 79-44-7 Карбаминовый хлорид, диметил-
U097 79-44-7 Диметилкарбамоилхлорид
U098 57-14-7 1,1-диметилгидразин
U098 57-14-7 Гидразин, 1,1-диметил-
U099 540-73-8 1,2-диметилгидразин
U099 540-73-8 Гидразин, 1,2-диметил-
U101 105-67-9 2,4-Диметилфенол
U101 105-67-9 Фенол, 2,4-диметил-
U102 131-11-3 1,2-бензолдикарбоновая кислота, диметиловый эфир
U102 131-11-3 Диметилфталат
U103 77-78-1 Диметилсульфат
U103 77-78-1 Серная кислота, сложный диметиловый эфир
U105 121-14-2 Бензол, 1-метил-2,4-динитро-
U105 121-14-2 2,4-Динитротолуол
U106 606-20-2 Бензол, 2-метил-1,3-динитро-
U106 606-20-2 2,6-динитротолуол
U107 117-84-0 1,2-бензолдикарбоновая кислота, диоктиловый эфир
U107 117-84-0 Ди-н-октилфталат
U108 123-91-1 1,4-диэтиленоксид
U108 123-91-1 1,4-диоксан
U109 122-66-7 1,2-дифенилгидразин
U109 122-66-7 Гидразин, 1,2-дифенил-
U110 142-84-7 Дипропиламин (I)
U110 142-84-7 1-пропанамин, N-пропил- (I)
U111 621-64-7 Ди-н-пропилнитрозамин
U111 621-64-7 1-пропанамин, N-нитрозо-N-пропил-
U112 141-78-6 Этиловый эфир уксусной кислоты (I)
U112 141-78-6 Этилацетат (I)
U113 140-88-5 Этилакрилат (I)
U113 140-88-5 Этиловый эфир 2-пропеновой кислоты (I)
U114 1 111-54-6 Карбамодитиевая кислота, 1,2-этандиилбис-, соли и сложные эфиры
U114 1 111-54-6 Этиленбисдитиокарбаминовая кислота, соли и сложные эфиры
U115 75-21-8 Оксид этилена (I, T)
U115 75-21-8 Оксиран (I, T)
U116 96-45-7 Этилентиомочевина
U116 96-45-7 2-имидазолидинтион
U117 60-29-7 Этан, 1,1′-оксибис- (I)
U117 60-29-7 Этиловый эфир (I)
U118 97-63-2 Этилметакрилат
U118 97-63-2 2-пропеновая кислота, 2-метил-, этиловый эфир
U119 62-50-0 Этилметансульфонат
U119 62-50-0 Метансульфоновая кислота, этиловый эфир
U120 206-44-0 Флуорантен
U121 75-69-4 Метан, трихлорфтор-
U121 75-69-4 Трихлормонофторметан
U122 50-00-0 формальдегид
U123 64-18-6 Муравьиная кислота (C, T)
U124 110-00-9 Фуран (I)
U124 110-00-9 Фурфуран (I)
U125 98-01-1 2-фуранкарбоксальдегид (I)
U125 98-01-1 Фурфурол (I)
U126 765-34-4 Глицидилальдегид
U126 765-34-4 Оксиранкарбоксиальдегид
U127 118-74-1 Бензол, гексахлор-
U127 118-74-1 Гексахлорбензол
U128 87-68-3 1,3-Бутадиен, 1,1,2,3,4,4-гексахлор-
U128 87-68-3 Гексахлорбутадиен
U129 58-89-9 Циклогексан, 1,2,3,4,5,6-гексахлор-, (1альфа, 2альфа, 3бета, 4альфа, 5альфа, 6бета) –
U129 58-89-9 Линдан
U130 77-47-4 1,3-Циклопентадиен, 1,2,3,4,5,5-гексахлор-
U130 77-47-4 гексахлорциклопентадиен
U131 67-72-1 Этан, гексахлор-
U131 67-72-1 Гексахлорэтан
U132 70-30-4 Гексахлорофен
U132 70-30-4 Фенол, 2,2′-метиленбис [3,4,6-трихлор-
U133 302-01-2 Гидразин (R, T)
U134 7664-39-3 Плавиковая кислота (C, T)
U134 7664-39-3 Фтороводород (C, T)
U135 7783-06-4 Сероводород
U135 7783-06-4 Сероводород H 2 S
U136 75-60-5 Арсиновая кислота диметил-
U136 75-60-5 Какодиловая кислота
U137 193-39-5 Индено [1,2,3-cd] пирен
U138 74-88-4 Метан, йод-
U138 74-88-4 Метилиодид
U140 78-83-1 Изобутиловый спирт (I, T)
U140 78-83-1 1-пропанол, 2-метил- (I, T)
U141 120-58-1 1,3-Бензодиоксол, 5- (1-пропенил) –
U141 120-58-1 Изосафрол
U142 143-50-0 Кепоне
U142 143-50-0 1,3,4-Метено-2H-циклобута [cd] пентален-2-он, 1,1a, 3,3a, 4,5,5,5a, 5b, 6-декахлороктагидро-
U143 303-34-4 2-бутеновая кислота, 2-метил-, 7- [[2,3-дигидрокси-2- (1-метоксиэтил) -3-метил-1-оксобутокси] метил] -2,3,5,7a-тетрагидро- 1H-пирролизин-1-иловый эфир, [1S- [1альфа (Z), 7 (2S *, 3R *), 7aalpha]] –
U143 303-34-4 Лазиокарпин
U144 301-04-2 Уксусная кислота, соль свинца (2 +)
U144 301-04-2 Ацетат свинца
U145 7446-27-7 Свинец фосфат
U145 7446-27-7 Фосфорная кислота, соль свинца (2 +) (2: 3)
U146 1335-32-6 Свинец, бис (ацетато-O) тетрагидрокситри-
U146 1335-32-6 Свинец субацетат
U147 108-31-6 2,5-фурандион
U147 108-31-6 Малеиновый ангидрид
U148 123-33-1 Гидразид малеиновой кислоты
U148 123-33-1 3,6-пиридазиндион, 1,2-дигидро-
U149 109-77-3 Малононитрил
U149 109-77-3 Пропандинитрил
U150 148-82-3 Мелфалан
U150 148-82-3 L-фенилаланин, 4- [бис (2-хлорэтил) амино] –
U151 7439-97-6 Меркурий
U152 126-98-7 Метакрилонитрил (I, T)
U152 126-98-7 2-пропеннитрил, 2-метил- (I, T)
U153 74-93-1 Метантиол (I, T)
U153 74-93-1 Тиометанол (I, T)
U154 67-56-1 Метанол (I)
U154 67-56-1 Метиловый спирт (I)
U155 91-80-5 1,2-этандиамин, N, N-диметил-N’-2-пиридинил-N ‘- (2-тиенилметил) –
U155 91-80-5 метапирилен
U156 79-22-1 Хлористоводородная кислота, метиловый эфир (I, T)
U156 79-22-1 Метилхлоркарбонат (I, T)
U157 56-49-5 бенз [j] акантрилен, 1,2-дигидро-3-метил-
U157 56-49-5 3-метилхолантрен
U158 101-14-4 Бензоламин, 4,4′-метиленбис [2-хлор-
U158 101-14-4 4,4′-Метиленбис (2-хлоранилин)
U159 78-93-3 2-бутанон (I, T)
U159 78-93-3 Метилэтилкетон (МЭК) (I, T)
U160 1338-23-4 2-бутанон, пероксид (R, T)
U160 1338-23-4 Пероксид метилэтилкетона (R, T)
U161 108-10-1 Метилизобутилкетон (I)
U161 108-10-1 4-метил-2-пентанон (I)
U161 108-10-1 Пентанол, 4-метил-
U162 80-62-6 Метилметакрилат (I, T)
U162 80-62-6 2-пропеновая кислота, 2-метил-, метиловый эфир (I, T)
U163 70-25-7 Гуанидин, -метил-N’-нитро-N-нитрозо-
U163 70-25-7 МННГ
U164 56-04-2 Метилтиоурацил
U164 56-04-2 4 (1H) -Пиримидинон, 2,3-дигидро-6-метил-2-тиоксо-
U165 91-20-3 Нафталин
U166 130-15-4 1,4-нафталендион
U166 130-15-4 1,4-нафтохинон
U167 134-32-7 1-нафталинамин
U167 134-32-7 альфа-нафтиламин
U168 91-59-8 2-нафталинамин
U168 91-59-8 бета-нафтиламин
U169 98-95-3 Бензол нитро-
U169 98-95-3 Нитробензол (I, T)
U170 100-02-7 п-Нитрофенол
U170 100-02-7 Фенол, 4-нитро-
U171 79-46-9 2-нитропропан (I, T)
U171 79-46-9 Пропан, 2-нитро- (I, T)
U172 924-16-3 1-бутанамин, N-бутил-N-нитрозо-
U172 924-16-3 N-нитрозоди-н-бутиламин
U173 1116-54-7 Этанол, 2,2 ‘- (нитрозоимино) бис-
U173 1116-54-7 N-нитрозодиэтаноламин
U174 55-18-5 этанамин, -этил-N-нитрозо-
U174 55-18-5 N-Nitrosodiethylamine
U176 759-73-9 N-Nitroso-N-ethylurea
U176 759-73-9 Urea, N-ethyl-N-nitroso-
U177 684-93-5 N-Nitroso-N-methylurea
U177 684-93-5 Urea, N-methyl-N-nitroso-
U178 615-53-2 Carbamic acid, methylnitroso-, ethyl ester
U178 615-53-2 N-Nitroso-N-methylurethane
U179 100-75-4 N-Nitrosopiperidine
U179 100-75-4 Piperidine, 1-nitroso-
U180 930-55-2 N-Nitrosopyrrolidine
U180 930-55-2 Pyrrolidine, 1-nitroso-
U181 99-55-8 Benzenamine, 2-methyl-5-nitro-
U181 99-55-8 5-Nitro-o-toluidine
U182 123-63-7 1,3,5-Trioxane, 2,4,6-trimethyl-
U182 123-63-7 Paraldehyde
U183 608-93-5 Benzene, pentachloro-
U183 608-93-5 Pentachlorobenzene
U184 76-01-7 Ethane, pentachloro-
U184 76-01-7 Pentachloroethane
U185 82-68-8 Benzene, pentachloronitro-
U185 82-68-8 Pentachloronitrobenzene (PCNB)
U186 504-60-9 1-Methylbutadiene (I)
U186 504-60-9 1,3-Pentadiene (I)
U187 62-44-2 Acetamide, -(4-ethoxyphenyl)-
U187 62-44-2 Phenacetin
U188 108-95-2 Phenol
U189 1314-80-3 Phosphorus sulfide (R)
U189 1314-80-3 Sulfur phosphide (R)
U190 85-44-9 1,3-Isobenzofurandione
U190 85-44-9 Phthalic anhydride
U191 109-06-8 2-Picoline
U191 109-06-8 Pyridine, 2-methyl-
U192 23950-58-5 Benzamide, 3,5-dichloro-N-(1,1-dimethyl-2-propynyl)-
U192 23950-58-5 Pronamide
U193 1120-71-4 1,2-Oxathiolane, 2,2-dioxide
U193 1120-71-4 1,3-Propane sultone
U194 107-10-8 1-Propanamine (I,T)
U194 107-10-8 n-Propylamine (I,T)
U196 110-86-1 Pyridine
U197 106-51-4 p-Benzoquinone
U197 106-51-4 2,5-Cyclohexadiene-1,4-dione
U200 50-55-5 Reserpine
U200 50-55-5 Yohimban-16-carboxylic acid, 11,17-dimethoxy-18-[(3,4,5-trimethoxybenzoyl)oxy]-, methyl ester,(3beta,16beta,17alpha,18beta,20alpha)-
U201 108-46-3 1,3-Benzenediol
U201 108-46-3 Resorcinol
U203 94-59-7 1,3-Benzodioxole, 5-(2-propenyl)-
U203 94-59-7 Safrole
U204 7783-00-8 Selenious acid
U204 7783-00-8 Selenium dioxide
U205 7488-56-4 Selenium sulfide
U205 7488-56-4 Selenium sulfide SeS 2 (R,T)
U206 18883-66-4 Glucopyranose, 2-deoxy-2-(3-methyl-3-nitrosoureido)-, D-
U206 18883-66-4 D-Glucose, 2-deoxy-2-[ [(methylnitrosoamino)-carbonyl]amino]-
U206 18883-66-4 Streptozotocin
U207 95-94-3 Benzene, 1,2,4,5-tetrachloro-
U207 95-94-3 1,2,4,5-Tetrachlorobenzene
U208 630-20-6 Ethane, 1,1,1,2-tetrachloro-
U208 630-20-6 1,1,1,2-Tetrachloroethane
U209 79-34-5 Ethane, 1,1,2,2-tetrachloro-
U209 79-34-5 1,1,2,2-Tetrachloroethane
U210 127-18-4 Ethene, tetrachloro-
U210 127-18-4 Tetrachloroethylene
U211 56-23-5 Carbon tetrachloride
U211 56-23-5 Methane, tetrachloro-
U213 109-99-9 Furan, tetrahydro-(I)
U213 109-99-9 Tetrahydrofuran (I)
U214 563-68-8 Acetic acid, thallium(1 + ) salt
U214 563-68-8 Thallium(I) acetate
U215 6533-73-9 Carbonic acid, dithallium(1 + ) salt
U215 6533-73-9 Thallium(I) carbonate
U216 7791-12-0 Thallium(I) chloride
U216 7791-12-0 Thallium chloride TlCl
U217 10102-45-1 Nitric acid, thallium(1 + ) salt
U217 10102-45-1 Thallium(I) nitrate
U218 62-55-5 Ethanethioamide
U218 62-55-5 Thioacetamide
U219 62-56-6 Thiourea
U220 108-88-3 Benzene, methyl-
U220 108-88-3 Toluene
U221 25376-45-8 Benzenediamine, ar-methyl-
U221 25376-45-8 Toluenediamine
U222 636-21-5 Benzenamine, 2-methyl-, hydrochloride
U222 636-21-5 o-Toluidine hydrochloride
U223 26471-62-5 Benzene, 1,3-diisocyanatomethyl- (R,T)
U223 26471-62-5 Toluene diisocyanate (R,T)
U225 75-25-2 Bromoform
U225 75-25-2 Methane, tribromo-
U226 71-55-6 Ethane, 1,1,1-trichloro-
U226 71-55-6 Methyl chloroform
U226 71-55-6 1,1,1-Trichloroethane
U227 79-00-5 Ethane, 1,1,2-trichloro-
U227 79-00-5 1,1,2-Trichloroethane
U228 79-01-6 Ethene, trichloro-
U228 79-01-6 Trichloroethylene
U234 99-35-4 Benzene, 1,3,5-trinitro-
U234 99-35-4 1,3,5-Trinitrobenzene (R,T)
U235 126-72-7 1-Propanol, 2,3-dibromo-, phosphate (3:1)
U235 126-72-7 Tris(2,3-dibromopropyl) phosphate
U236 72-57-1 2,7-Naphthalenedisulfonic acid, 3,3′-[(3,3′-dimethyl[1,1′-biphenyl]-4,4′-diyl)bis(azo)bis[5-amino-4-hydroxy]-, tetrasodium salt
U236 72-57-1 Trypan blue
U237 66-75-1 2,4-(1H,3H)-Pyrimidinedione, 5-[bis(2-chloroethyl)amino]-
U237 66-75-1 Uracil mustard
U238 51-79-6 Carbamic acid, ethyl ester
U238 51-79-6 Ethyl carbamate (urethane)
U239 1330-20-7 Benzene, dimethyl- (I,T)
U239 1330-20-7 Xylene (I)
U240 194-75-7 Acetic acid, (2,4-dichlorophenoxy)-, salts & esters
U240 194-75-7 2,4-D, salts & esters
U243 1888-71-7 Hexachloropropene
U243 1888-71-7 1-Propene, 1,1,2,3,3,3-hexachloro-
U244 137-26-8 Thioperoxydicarbonic diamide [(H 2 N)C(S)] 2 S 2 , tetramethyl-
U244 137-26-8 Thiram
U246 506-68-3 Cyanogen bromide (CN)Br
U247 72-43-5 Benzene, 1,1′-(2,2,2-trichloroethylidene)bis[4- methoxy-
U247 72-43-5 Methoxychlor
U248 181-81-2 2H-1-Benzopyran-2-one, 4-hydroxy-3-(3-oxo-1-phenyl-butyl)-, & salts, when present at concentrations of 0.3% или менее
U248 181-81-2 Варфарин и соли, если они присутствуют в концентрациях 0,3% или менее
U249 1314-84-7 Фосфид цинка Zn 3 P 2 , если он присутствует в концентрациях 10% или менее
U271 17804-35-2 Беномил
U271 17804-35-2 Карбаминовая кислота, [1 – [(бутиламино) карбонил] -1H-бензимидазол-2-ил] -, метиловый эфир
U278 22781-23-3 Бендиокарб
U278 22781-23-3 1,3-Бензодиоксол-4-ол, 2,2-диметил-, метилкарбамат
U279 63-25-2 Карбарил
U279 63-25-2 1-нафталинол, метилкарбамат
U280 101-27-9 Барбан
U280 101-27-9 Карбаминовая кислота, (3-хлорфенил) -, 4-хлор-2-бутиниловый эфир
U328 95-53-4 бензоламин, 2-метил-
U328 95-53-4 о-толуидин
U353 106-49-0 бензоламин, 4-метил-
U353 106-49-0 п-Толуидин
U359 110-80-5 Этанол, 2-этокси-
U359 110-80-5 Моноэтиловый эфир этиленгликоля
U364 22961-82-6 Бендиокарб фенол
U364 22961-82-6 1,3-Бензодиоксол-4-ол, 2,2-диметил-,
U367 1563-38-8 7-бензофуранол, 2,3-дигидро-2,2-диметил-
U367 1563-38-8 Карбофуран фенол
U372 10605-21-7 Карбаминовая кислота, 1H-бензимидазол-2-ил, метиловый эфир
U372 10605-21-7 Карбендазим
U373 122-42-9 Карбаминовая кислота, фенил-, 1-метилэтиловый эфир
U373 122-42-9 Propham
U387 52888-80-9 Дипропил-, S- (фенилметиловый) эфир карбамотиевой кислоты
U387 52888-80-9 Просульфокарб
U389 2303-17-5 Бис (1-метилэтил) -, карбамотиановая кислота, сложный эфир S- (2,3,3-трихлор-2-пропенил)
U389 2303-17-5 Триаллат
U394 30558-43-1 A2213
U394 30558-43-1 Этанимидотиовая кислота, 2- (диметиламино) -N-гидрокси-2-оксо-, метиловый эфир
U395 5952-26-1 Диэтиленгликоль, дикарбамат
U395 5952-26-1 Этанол, 2,2′-оксибис-, дикарбамат
U404 121-44-8 этанамин, N, N-диэтил-
U404 121-44-8 Триэтиламин
U409 23564-05-8 Карбаминовая кислота, [1,2-фениленбис (иминокарбонотиоил)] бис-, диметиловый эфир
U409 23564-05-8 Тиофанат-метил
U410 59669-26-0 Этанимидотиовая кислота, N, N ‘- [тиобис [(метилимино) карбонилокси]] бис-, диметиловый эфир
U410 59669-26-0 Тиодикарб
U411 114-26-1 Фенол, 2- (1-метилэтокси) -, метилкарбамат
U411 114-26-1 Пропоксур
См. F027 93-76-5 Уксусная кислота, (2,4,5-трихлорфенокси) –
См. F027 87-86-5 Пентахлорфенол
См. F027 87-86-5 Фенол, пентахлор-
См. F027 58-90-2 Фенол, 2,3,4,6-тетрахлор-
См. F027 95-95-4 Фенол, 2,4,5-трихлор-
См. F027 88-06-2 Фенол, 2,4,6-трихлор-
См. F027 93-72-1 Пропановая кислота, 2- (2,4,5-трихлорфенокси) –
См. F027 93-72-1 Сильвекс (2,4,5-ТП)
См. F027 93-76-5 2,4,5-Т
См. F027 58-90-2 2,3,4,6-Тетрахлорфенол
См. F027 95-95-4 2,4,5-Трихлорфенол
См. F027 88-06-2 2,4,6-Трихлорфенол

Хорошее качество C45 Круглый пруток | AISI 1045 | DIN 1.1191 | JIS S45C Оптовая торговля в Германию

Наше развитие зависит от современного оборудования, выдающихся талантов и постоянно совершенствуемых технологий для получения хорошего качества Круглый пруток C45 | AISI 1045 | DIN 1.1191 | JIS S45C Оптовые поставки в Германию, мы рассчитываем на еще более тесное сотрудничество с зарубежными клиентами на основе взаимной выгоды. Пожалуйста, свяжитесь с нами для получения более подробной информации


Сталь C45 Round Baris
– нелегированная среднеуглеродистая сталь, которая также является углеродистой конструкционной сталью
.C45 – это сталь средней прочности с хорошей обрабатываемостью
и отличными характеристиками при растяжении. Круглая сталь C45 – это сталь марки
, обычно поставляемая в черном горячекатаном состоянии или иногда в нормализованном состоянии
, с типичным диапазоном прочности на разрыв 570-700,
МПа и твердостью по Бринеллю 170-210 в любом состоянии. Однако
не реагирует удовлетворительно на азотирование из-за отсутствия подходящих легирующих элементов
.

Круглый пруток

C45 соответствует стандартам EN8 или 080M40.
Пруток или пластина из стали C45, пригодные для изготовления таких деталей, как шестерни
, болты, оси и валы общего назначения, шпонки и шпильки.

1. Диапазон поставок круглого прутка из стали C45

    Стальной круглый пруток C45: диаметр 8 мм – 3000 мм

    C45 Стальной лист: толщина 10 мм – 1500 мм x ширина 200 мм – 3000 мм

    Стальной плоский пруток C45: 200 мм – 1000 мм

    Квадрат C45 Сталь: 20-800 мм

    Сталь с шестигранной головкой.

    Поверхность: черная, грубая, точеная или в соответствии с заданными требованиями.

    2. Общие технические характеристики C45Steel

    Страна США Британский Япония Австралия
    Стандартный ASTM A29 EN 10083-2 JIS G4051 КАК 1442
    Марки 1045 C45 / 1.1191 S45C 1045

    3. Свойства химического состава стали круглого стержня C45

    Стандартный класс С Mn П S Si Ni Cr
    ASTM A29 1045 0.43-0,50 0,60–0,90 0,04 0,050
    EN 10083-2 C45 / 1.1191 0,42-0,50 0,50–0,90 0,03 0,035 0,04 0,4 0,4
    JIS G4051 S45C 0,42-0,48 0,60–0,90 0,03 0,035 0,15–0,35

    4.Механические свойства материала круглого прутка C45 из стали

      Механические свойства в закаленном + отпущенном состоянии

      Диаметр d (мм) Толщина t (мм) Предел текучести 0,2% (Н / мм2) Предел прочности на разрыв (Н / мм2) Относительное удлинение A5 (%) Сокращение Z (%)
      <16 <8 мин. 490 700-850 мин. 14 мин. 35
      <17-40 <8 <= 20 мин.430 650-800 мин. 16 мин. 40
      <41-100 <20 <= 60 мин. 370 630-780 мин. 17 мин. 45

        Механические свойства в нормированном состоянии

        Диаметр d (мм) Толщина t (мм) Предел текучести 0,2% (Н / мм2) Предел прочности на разрыв (Н / мм2) Относительное удлинение A5 (%)
        <16 <16 мин.390 мин. 620 мин. 14
        <17-100 <16 <= 100 мин. 305 мин. 305 мин. 16
        <101-250 <100 <250 мин. 275 мин. 560 мин. 16

        5. Ковка круглого прутка из углеродистой стали C45

        Температура горячего формования: 850-1200oC.

        Pre
        нагревают до 750 oC – 800 oC, затем продолжают нагрев до 1100 oC – 1200 oC максимум
        , выдерживают до тех пор, пока температура не станет равномерной по всей секции, и
        немедленно начнут ковку. Ковка не работает при температуре ниже 850 oC.
        Готовые поковки могут охлаждаться на воздухе.

        Мы делаем ставку на круглый пруток из кованой стали марки С45. Добро пожаловать на запрос материалов из стали C45.

        6. DIN C45, Круглый пруток, термообработка стали

        Ковка или горячая прокатка: 1100-850 ° С
        Нормализация: 840-880 ° C / воздух
        Мягкий отжиг: 680-710 ° C / печь
        Закалка: 820-860 ° C / вода, масло
        Закалка: 550-660 ° C / воздух

        7.Закалка стали DIN C45 Закалка

        Отвердить при температуре 820-860 ° C с последующей закалкой в ​​воде или масле.

        Нагрейте
        до 820 oC – выдержку 850 oC до тех пор, пока температура не станет однородной по всей секции
        , выдержите 10-15 минут на 25 мм секции и закалите в воде или рассоле
        . Или

        Нагрейте до 830 ° C – 860 ° C, замочите, как указано выше, и охладите в масле. Немедленно темперируйте, пока рука еще теплая.

        Твердость поверхности круглого прутка из специальной стали C45 после пламенной или индукционной закалки:

          Сталь Название Стальной номер Поверхность Harndess

          C45 1.1191 мин. 55 HRC

          8. Применение углеродистой стали DIN C45 Круглый пруток

          DIN
          Стальной материал круглого прутка C45 и стальной лист C45, плоский прокат
          широко используется во всех отраслях промышленности для применений, которые требуют большей прочности и износостойкости
          , чем низкоуглеродистая низкоуглеродистая сталь.

          Закаленная и впоследствии отпущенная сталь
          для круглого прутка из стали марки C45, стального листа, плоского и квадратного
          используется для осей, болтов, кованых шатунов, коленчатых валов, торсионов, легких шестерен, направляющих стержней, винтов, поковок, колеса
          . шины, валы, серпы, топоры, ножи, сверла по дереву, молотки
          и т. д.

          Приглашаем клиентов на запрос Круглый пруток DIN C45, стальной лист
          CK45 / 1.1191, плоский прокат для стали C45. Мы являемся профессиональным поставщиком и экспортером
          уже более 20 лет. Мы предлагаем вам мировое решение
          для круглой прутковой стали C45.

        • Предыдущее:
        • Далее: Скидка 50% на цену Металлические формы в Рио-де-Жанейро

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности.Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки вашего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в cookie-файлах может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

.

Добавить комментарий

Ваш адрес email не будет опубликован.