Несущая способность балки двутавровой: Расчет нагрузки двутавровой балки: На прочность, на прогиб

alexxlab | 20.02.1980 | 0 | Разное

Содержание

Несущая способность балки. Расчет нагрузки двутавровой балки


Несущая способность металлической балки – Доктор Лом. Первая помощь при ремонте

Несущая способность однопролетной металлической балки при равномерно распределенной нагрузке и шарнирном закреплении на опорах

1. Например, мы в качестве балок ддя перекрытия помещения размерами 4 на 6 метров использовали 4 профильных трубы сечением 100х100 мм с толщиной стенки 5 мм. Тогда длина пролета балки составит l = 4 м, а шаг балок 6/5 = 1.2 м. Согласно сортаменту для квадратных профильных труб момент сопротивления такой металлической балки составит Wz = 54.19 см3.

2. Расчетное сопротивление стали следует уточнять у производителя, ну а если оно точно не известно, то можно принимать наименьшее из возможных, т.е. R = 2000 кг/см2.

3. Тогда максимальный изгибающий момент, который может выдержать такая балка:

M = WzR = 54.19·2000 = 108380 кгсм или 1083.8 кгм.

4. При пролете 4 м максимальная распределенная нагрузка на погонный метр составляет:

q = 8M/l2 = 8·1083.8/42 = 541.9 кг/м.

5. При шаге балок 1.2 м (расстоянии между осями балок) максимальная плоская равномерно распределенная нагрузка на квадратный метр составит:

q = 541.9/1.2 = 451.6 кг/м2 (сюда входит и вес балок).

Вот и весь расчет.

Несущая способность однопролетной металлической балки при действии сосредоточенных нагрузок и шарнирном закреплении на опорах

Если на металлические балки перекрытия сверху уложены сначала лаги, а потом уже делается перекрытие по лагам, то на такие металлические балки будет действовать не одна равномерно распределенная нагрузка, а несколько сосредоточенных. Впрочем перевести сосредоточенные нагрузки в эквивалентную равномерно распределенную совсем не сложно – достаточно просто разделить значение равномерно распределенной нагрузки, которую мы уже определили, на коэффициент перехода.

Например, если мы по металлическим балкам уложили лаги через каждые 0.5 метра, то есть всего 4/0.5 +1 = 9 лаг – сосредоточенных нагрузок. При этом крайние лаги можно вообще в расчет не брать и тогда количество сосредоточенных сил будет = 7, а коэффициент перехода от сосредоточенных нагрузок к эквивалентной равномерно распределенной составит γ = 1.142.

Тогда максимальная равномерно распределенная нагрузка, которую может выдержать данная металлическая балка, составит:

q = 451.6/1.142 = 395.4 кг/м2

Конечно же металлические балки могут быть и многопролетными или иметь жесткое закрепление на одной или двух опорах, т.е. быть статически неопределимыми. В таких случаях изменится только формула определения максимального изгибающего момента (см. расчетные схемы для статически неопределимых балок), но весь алгоритм расчета останется таким же.

doctorlom.com

2.2 Проверка несущей способности балки

2.2.1 Проверка прочности балки

Подобранное сечение проверяем на прочность по первой группе предельных состояний от действия касательных напряжений по формуле(2.6):

(2.6)

где – наибольшая поперечная сила на опоре;

и – статический момент и момент инерции сечения;

– толщина стенки балки;

– расчетное сопротивление стали сдвигу; определяем по формуле (2.7)

(2.7)

где – предел текучести стали, принимаемый равным значению предела текучести по государственным стандартам и техническим условиям на сталь; принимаемМПа;

– коэффициент надежности по материалу проката ; принимаем .

Н/мм2= 20,09 кН/см.

кН/см<кН/см, условие выполняется.

2.3 Проверка жесткости балки

Проверка второго предельного состояния ведем путем определения прогиба балки от действия нормативных нагрузок при допущении упругой работы материала. Для однопролетной балки, нагруженной равномерно распределенной нагрузкой, проверка деформативности производится по формуле (2.8):

, (2.8)

где – значение нормативной нагрузки на балку; определяется по формуле с учетом значений, соответствующих выбранной балке настила;

кН/м <, т.е. условие жесткости балки удовлетворяется.

3 Расчет главной балки

Проектирование балок составного сечения выполняем в два этапа: на первом этапе компонуем и подбираем сечения, а на втором – проверяем балку на прочность, устойчивость и жесткость.

3.1 Подбор сечения главной балки

3.1.1 Сбор нагрузок.

Подбор сечения главной балки состоит в определении размеров поясов и стенки составной сварной балки, с учетом заданных технологическим заданием условий, экономичности, прочности, устойчивости и технологичности изготовления. Расчетная схема представлена на рисунке 3

а – расчетная схема; б – сечение балки

Рисунок 3 – К подбору сечения главной балки

Определяем по формуле (3.1) расчетную погонную нагрузку на главную балку

(3.1)

где и- коэффициенты надежности по нагрузке для временной нормативной и постоянной нагрузок; принимаем по;;

– собственный вес настила;

– масса 1 м балки настила;

– собственный вес главной балки, предварительно принимаемый равным  1 – 2 % нагрузки, приходящейся на балку;

кН/м

Нормативная нагрузка:

кН/м

3.1.2 Определение усилий.

Расчетный изгибающий момент в середине пролета:

(3.2)

кНм

Поперечная сила на опоре:

(3.3)

кН

Определим также нормативный изгибающий момент

(3.4)

кНм

3.1.3 Подбор сечения балки.

Главную балку рассчитываем с учетом развития пластических деформаций. Определяем требуемый момент сопротивления балки по формуле (3.5):

(3.5)

где – расчетное сопротивление материала главной балки; принимаемМПа;

с1 – коэффициент, учитывающий упругопластическую работу материала балки; принимаем с1 = 1,1.

см 3

3.1.4 Компоновка сечения главной балки

Компоновку составного сечения начинаем с установления высоты балки.

Предварительно задаемся высотой балки м

Определяем толщину стенки по эмпирической формуле (3.6):

(3.6)

мм.

Предварительно принимаем 12 мм

Определяем оптимальную высоту балки по формуле (3.7):

(3.7)

где – для сварных балок постоянного сечения.

см=1.19м

Определяем минимальную высоту балки по формуле (3.8):

, (3.8)

где fu – предельный относительный прогиб; для главных балок fu=400.

м.

Окончательно принимаем высоту стенки балки hw=140 см.

Определяем минимальную толщину стенки из условия работы ее на срез

( 3.9):

(3.9)

где – при работе на срез без учета поясов

м

Принимаем толщину пояса tf=3см

hb=hw+6=140+6=146см

Окончательно принимаем tw=12мм.

Проверим местную устойчивость стенки главной балки по формуле (3.10):

(3.10)

см

Условие выполняется, следовательно, дополнительного укрепления стенки главной балки продольным ребром не требуется.

Принимаем толщину поясных листов 30 мм.

Вычисляем требуемый момент инерции сечения балки по формуле(3.11):

(3.11)

где hb – принятая высота главной балки.

см4

Высота стенки балки см; находим момент инерции стенки

(3.12)

см4

Момент инерции, приходящийся на поясные листы

см4.

Требуемую площадь сечения одной полки определяем по формуле(3.13):

(3.13)

где см – расстояние между центрами полок.

см2

Ширину полки балки определим по формуле (3.14):

. (3.14)

см. Принимаем см.

см2

Из условия обеспечения местной устойчивости (при работе балки в пределах упругих деформаций) отношение свободного свеса полки к ее толщинене должно превышать значений, вычисляемых по формулам (3.15) и (3.16):

(3.15)

см

с учетом развития пластических деформаций

. (3.16)

см

Условия выполняются.

studfiles.net

Расчет нагрузки двутавровой балки – максимальные значения + Видео

Расчет нагрузки двутавровой балки проводится для определения номера из списка сортамента при проектировании несущих конструкций зданий и сооружений. Расчет производится согласно формулам и таблицам, а полученные параметры влияют на процесс проектирования и строительства, а также дальнейшие эксплуатационные характеристики конструкции.

1 Применение двутавровой балки и основные параметры

Основная функция двутавра при проектировании различных зданий и сооружений – создание надежной и эффективной несущей конструкции. В отличии от бетонных вариантов несущих конструкций, использование двутавровой балки позволяет добиться увеличения ширины пролетов жилых или коммерческих зданий и уменьшить массу основных несущих конструкций. Таким образом, существенно повышается рентабельность строительства.

Двутавровое балки

Рекомендуем ознакомиться

Двутавровый швеллер выбирается, исходя из длины и веса. Балки могут быть горячекатаными стандартными или специальными и иметь параллельные или наклонные грани полок. Они изготавливаются из низкоуглеродистой стали различных марок и используются в разных сферах строительства. Согласно нормам ГОСТ 823989, длина двутаврового швеллера может быть от 3 до 12 метров. По типу использования такие балки могут быть балочными, колонными, широкополочными или монорельсными, которые используются для строительства подвесных мостов. Определить тип балки можно по буквенной маркировке в таблице сортамента.

Масса двутавра рассчитывается согласно таблице сортамента, в которой указан конкретный номер и маркировка двутавровой балки, а также показатели ширины, высоты, толщины полок и средняя толщина стенок профиля. Таким образом, для определения массы, согласно таблице, необходимо знать нормативный вес одного погонного метра. Например, балка с номером 45, при весе погонного метра 66,5 кг, имеет длину 15,05 метров.

Помимо расчета массы, который можно провести, используя простой калькулятор, в процессе проектирования необходимо рассчитать максимальную и минимальную нагрузку на изгиб и прогиб (деформацию), чтобы выбрать подходящую под конкретные цели строительства двутавровую балку. Данные расчеты основаны на таких параметрах металлического профиля, как:

  • минимальное и максимальное расстояние между полками (стенками) балки с учетом их толщины;
  • максимальная нагрузка на будущую конструкцию перекрытия;
  • тип и форма конструкции, метод крепления;
  • площадь поперечного сечения.

В некоторых случаях для проведения расчетов может понадобиться и шаг укладки, то есть расстояние, через которое балки укладываются параллельно друг другу.

Расчет двутавровой балки, как правило, производится на прочность и прогиб. Для максимально точных расчетов в таблице сортамента и нормах ГОСТ прописаны и такие необходимые параметры, как момент сопротивления, который делится на статистический и осевые моменты. Помимо этого, иногда необходимо знать величину расчетного сопротивления, которая зависит от типа и марки стали, из которой изготовлена двутавровая балка, а также от типа производства (сварная или прокатная). В случае сварного профиля при расчете прочности прибавляется до 30 процентов к вычисленной несущей нагрузке профиля.

2 Выбор металлической балки по номеру и примеры расчета

В таблице сортамента все номера металлического двутавра указаны согласно нормам ГОСТ 823989. Таким образом, выбор номера должен осуществляться с учетом предполагаемой нагрузки на балку, длины пролетов, веса. Например, если максимальная нагрузка на двутавровую балку равна 300 кг/м.п, из таблицы выбирается балка номер 16, при этом пролет будет равен 6 метрам при шаге укладки от 1 до 1,2 метров. При выборе 20-го профиля максимальная нагрузка увеличивается до 500 кг/ м.п, а шаг может быть увеличен до 1,2 метра. Профиль с номерами 10 или 12 означает максимально допустимую нагрузку до 300 кг/м.п и сокращение пролета до 3-4 метров.

Применение балок в строительстве

Таким образом, расчет того, какую нагрузку выдерживает балка, производится так:

  • определяется величина нагрузки, которая давит на перекрытие с учетом веса самого профиля (из таблицы), которая рассчитывается на 1 погонный метр профиля;
  • полученная нагрузка, согласно формуле, умножается на показатель коэффициента надежности и упругости стали, который прописан в ГОСТ 823989;
  • используя таблицу расчетных значений по ГОСТ, необходимо определить величину момента сопротивления;
  • исходя из момента сопротивления, выбираем соответствующий номер из таблицы сортамента.

Рассчитывая несущую нагрузку при выборе профиля, рекомендуем выбирать номера балки на 1-2 пункта выше полученных расчетных значений. Несущая способность профиля также рассчитывается при определении нагрузки двутавровой балки на изгиб.

3 Как марки стали влияют на расчеты?

При расчете прочности несущей балки в обязательном порядке учитывается марка стали, которая использовалась в процессе производства, и тип производственного проката. Для сложных конструкций и возведения перекрытий жилых зданий, коммерческих помещений, мостов необходимо выбирать балки из максимально прочных марок стали. Изделия с более высокой прочностью обладают меньшими габаритными размерами, но при этом способны выдерживать большие нагрузки.

Балки на производстве

Таким образом, расчет на прочность рекомендуется проводить несколькими способами, а полученные данные сравнить для получения максимально точных результатов вычислений. При определении прочности необходимо знать нормативные и расчетные напряжения и учитывать такие параметры, как поперечные и продольные силы, а также крутящие моменты. Существует несколько вариантов расчетных калькуляторов, с помощью которых определяется максимально и минимально допустимая нагрузка на прочность.

4 Как вычислить нагрузку на деформацию?

Для определения нагрузки балки на деформацию необходимо учитывать такие параметры, как:

  • расчетная и нормативная нагрузка;
  • длина и вес перекрытия;
  • нормативное сопротивление.

Двутавровые балки для строительства

При этом для некоторых типов балок невозможно рассчитать нагрузку на прогиб, ввиду их формы и видов крепления при строительстве. Следует также понимать, что деформация балки (прогиб) возникает в поворотных углах. Поэтому она сильно зависит от габаритов конструкции, ее назначения, марки стали и других свойств и показателей. Существует несколько формул и вариантов для расчета балки на прогиб, использование которых зависит от расчета деформации внизу и вверху балки. Чаще всего для того, чтобы вычислить максимальную нагрузку на прогиб, специалисты используют универсальную формулу. Величину нагрузки на будущую конструкцию необходимо умножить на ширину пролета в кубическом объеме. Полученный параметр разделите на произведение модуля упругости и величины инерционного момента.

Модуль упругости вычисляется, исходя из конкретной марки стали, момент инерции прописан в ГОСТе по номеру выбранной балки. Полученное число необходимо умножить на коэффициент, равный 0,013. В том случае, если рассчитанный относительный коэффициент деформации больше или меньше, чем прописано в нормативе, то в строительной конструкции необходимо использовать двутавры большего или меньшего типоразмера из таблицы.

Следует понимать, что двутавровая балка, ввиду своей формы, конструкции и веса, довольно редко используется в частном строительстве. Обычно вместо балок применяются более легкие швеллеры или стальные уголки. Но если вы все же используете балку для строительства небольшого частного дома, дачи, то необязательно проводить сложные расчеты по всем видам деформации и нагрузок. Для небольшой конструкции перекрытия достаточно рассчитать максимальную и минимальную нагрузку на изгиб.

tutmet.ru

Определение несущей способности железобетонной балки

Определение несущей способности ж/б балки без арматуры в сжатой зоне

 

Дано:

железобетонная балка длиной 4.5 м, высотой h = 30 см, шириной b = 240 мм из бетона марки М300, что соответствует классу В22.5. Балка армирована арматурой класса А-III (A400), двумя стержнями диаметром 18 мм снизу. В качестве крупного заполнителя использовался гранитный щебень (в итоге имеем тяжелый бетон)

Требуется определить:

какую равномерно распределенную нагрузку выдержит такая балка при условии шарнирного закрепления на опорах.

Решение:

Алгоритм расчета в этом случае выглядит следующим образом: сначала определяется высота сжатой зоны бетона, затем – значение момента, а после этого можно определить значение нагрузки. Ну а теперь подробнее:

1. Определение пролета балки

Так как длину опорных участков балки желательно принимать не менее h/2, то в нашем случае расчетный пролет составит l = 4.5 – 0.3 = 4.2 метра.

2. Определение прочностных характеристик

Расчетное сопротивление арматуры растяжению мы можем сразу принять по соответствующей таблице Ra = 3600 кг/см2. В таблицах расчетное сопротивление бетона класса В22.5 не приводится. Однако ничего не мешает нам определить это значение интерполированием:

Rb = (11.5 + 14.5)/2 = 13 МПа или 13/0.0981 = 132.5 кг/см2

а с учетом различных коэффициентов, учитывающих возможную длительность действия нагрузки, повторяемость нагрузок, условия работы бетона и др. мы для надежности примем Rb = 132.5·0.8 = 106 кг/см2.

Два стержня арматуры диаметром 18 мм имеют площадь Аs = 5.09 см2. Это можно определить как непосредственно из формулы А = пd2/4, так и по таблице.

3. Определение относительной высоты ho

Если ho нам не известно, то из конструктивных соображений в данном случае защитный слой бетона а ≥ 1.8 см, соответственно ho ≤ 30 – 1.8 – 0.9 ≤ 27.3 cм. Для дальнейших расчетов примем значение ho = 27 cм.

4. Определение высоты сжатой зоны бетона

Согласно формуле 220.6.5 высота сжатой зоны у составляет

(6.5)

тогда

у = 3600·5.09/(106·24) = 7.2024 ≈ 7.2 см

Заодно определим, находится ли данное значение в пределах допустимого

у/ho ≤ ξR 

7.2/27 = 0.267 < ξR = 0.531 (для арматуры класса А400)

5. Определение максимального значения момента

Так как согласно формуле 220.6.3

M < Rbbу (h0 – 0,5у)

То значение момента составит

М < 106·24·7.2(27 – 0.5·7.2) = 428613.12 кгс·см

т.е. максимально допустимое значение изгибающего момента составит M = 4286 кгс·м

6. Определение равномерно распределенной нагрузки

Так как

М = ql2/8

то

q = 8M/l2 = 8·4286/4.22 = 1943.46 кг/м

Т.е. имеющаяся балка при условии того, что при ее проектировании и изготовлении были соблюдены все конструктивные и технологические требования может выдерживать нагрузку до 1943 кг/м. Если на балку будут действовать одна или несколько сосредоточенных сил, то заключительная часть расчета будет несколько другой. Тем не менее часто сосредоточенную нагрузку или нагрузки можно привести к эквивалентной равномерно распределенной.

А если в сжатой зоне сечения также имеется арматура и ее влияние на прочность хочется учесть, то алгоритм расчета при этом не меняется, лишь немного усложняются формулы:

Определение несущей способности ж/б балки с арматурой в сжатой зоне

Например у рассчитанной выше балки имеется арматура в сжатой зоне – 2 стержня арматуры диаметром 12 мм. Площадь сечения сжимаемой арматуры составит А’s = 2.26 см2. Расстояние от верха балки до центра тяжести сжатой арматуры примем равным a’ = 3 см. Расчетное сопротивление сжатию составляет Rsc = 3600 кг/см2.

При наличии арматуры в сжатой зоне формула для определения высоты сжатой зоны примет следующий вид:

 (282.5)

тогда

у = 3600(5.09 – 2.26)/(106·24) = 4 см

так как у нас у/ho < ξR, то значение максимального изгибающего момента мы будем производить по следующей формуле:

M < Rbby(hо – 0,5у) +RcsA’s(ho – a’) (281.5.2)

M < 106·24·4(27 – 2) + 3600·2.26(27 – 3) = 254400 + 193536 = 447936 кгс·см

Таким образом максимально допустимое значение момента составит примерно М = 4479 кгс·м, т.е. примерно на 4.5% больше, чем при расчете без учета арматуры в сжатой зоне. Соответственно и значение максимально допустимой нагрузки также увеличится на 4.5% или в 1.045 раза и составит

q = 1943.46·1.045 = 2031 кг/м

Вот собственно и весь расчет. При этом стоит ли при расчете учитывать наличие арматуры в сжатой зоне сечения или нет – решать вам.

doctorlom.com

Несущая способность – балка – Большая Энциклопедия Нефти и Газа, статья, страница 1

Несущая способность – балка

Cтраница 1

Несущая способность балки будет исчерпана, когда напряжения достигнут предела текучести по всему сечению.  [1]

Несущая способность балки будет исчерпана после образования второго пластического шарнира на опоре В, так как балка станет геометрически изменяемой.  [2]

Несущая способность балки будет исчерпана, когда напряжения достигнут предела текучести по всему сечению. В этом случае От / граст т гсж и нейтральная ось делит площадь сечения пополам. Так как площадь стенки швеллера 36 – 0, 75 27 еж2 больше половины сечения 53, 4 / 2 26, 7 см2, то нейтральная ось проходят по площади стенки на расстоянии х от верхнего края.  [3]

Несущая способность балок в общем случае изгиба при расчете их по методу расчетных предельных состояний обычно определяется по тем же формулам, что и при чистом изгибе. Касательные напряжения при этом могут вычисляться по методу, изложенному выше.  [4]

Несущая способность балки, усиленной шпренгелем, должна проверяться на сочетаниях нагрузок, действующих на балку в момент установки шпренгеля ( усилия от натяжения и фактическая нагрузка) и на максимально возможную нагрузку после усиления.  [5]

Несущая способность балки должна удовлетворять большему из двух указанных условий, обеспечивающих несущую способность усиленной конструкции по моменту и поперечной силе.  [7]

Несущую способность балки необходимо сопоставлять с величиной критического момента МКр, при котором наступает потеря устойчивости. Если МКр меньше несущей способности, тогда М [ из уравнения ( 91) ] является решающим.  [9]

Несущую способность балки не-обходимо сопоставлять с величиной критического момента МКр, при котором наступает потеря устойчивости. Если Мкр меньше несущей способности, тогда М [ из уравнения ( 91) ] является решающим.  [11]

Увеличение несущей способности балки при предварительном напряжении может быть оценено следующим образом. Сила Р создает в нижнем поясе напряжение т – aR, где a – коэффициент; R – расчетное сопротивление.  [13]

Чем определяется несущая способность балки.  [14]

После этого несущая способность балки исчерпана.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

размеры, расчет веса 1 удельного погонного метра, ГОСТ

Несущие конструкции – об этих понятиях наслышан каждый человек.

Для того, чтобы создать мощную конструкцию, требуется соблюдать ряд правил и технических характеристик. Немаловажное значение имеют и государственные показатели, которые также приобрели название как ГОСТ.

Все эти понятия также распространены и на двутавровые балки, которые позволяют преобразовать сооружение. Этот элемент в большей степени отвечает за сплошное сечение конструкции и отвечает заизгиб.

Сортамент балки двутавровой

На первоначальном этапе изучения основ строительства сооружений работники могут столкнуться с таким понятием, как сортамент двутавровых балок. Оно подразумевает собой совокупность размеров, соответствующих государственным стандартам и форм профиля.

Как известно, сама конструкция может быть представлена в нескольких видах. В основном можно увидеть колонные, нормальные и широкополые балки. Все они могут быть созданы с различным уклоном.

Однако, исходя из этих показателей, практически невозможно узнать о том, сколько весит каждая деталь. Для этого и предусмотрен сортамент.

Такую программу можно скачать в интернете, при помощи неё пользователь без затруднений рассчитает общий вес балки, если ему будут известны такие характеристики как вес и длина.

Как правило, в этой программе приведены справочные значения следующих ГОСТов:

  • 8238 — 89;
  • 19426 — 74;
  • 26020 — 83.

В справочнике также указаны некоторые позволительные отклонения от стандартов. Все балки указывают в соответствии от конструкции и площади сечениями. Важными показателями являются и сопротивление, инерция и радиус.

Опытные строители знают и том, что на самом деле сортамент балок несколько отличается от других деталей, а именно от уголков. Это связанно с тем, что для них используется минимальное количество затрачиваемого материала.

Вес специальной двутавровой балки

Специальная балка – это элемент конструкции, используемый для создания различных сооружений. Как правило, обычно они участвуют в процессе строительства пролетов небольшой длины.

Существует несколько видов сооружений, для которых, чаще всего, применяются эти элементы:

  • Эстакады;
  • Монорельсовые пути;
  • Строительные колоны;
  • Склады;
  • Гаражи;
  • Подвалы;
  • Производственные постройки.

Что касается веса специальных балок, то стоит заметить, что они в несколько раз больше содержат металла, чем стандартные конструкции. Это значительный плюс в связи с тем, что их нет необходимости дополнительно увеличивать при помощи элементов.

Из-за отсутствия швов от сварки также уменьшается количество дефектов.

Балка двутавровая: нагрузка собственного веса

Часть человечества не придает значения техническим характеристикам, и делают это абсолютно напрасно. Показатели расчетов в полной мере влияют на правильность создания прочной конструкции.

Для архитектора конструкции эти параметры имеют большое значение, при помощи них он может изменить всю её структуру, а именно:

  • Создать большее количество пролетов;
  • Уменьшить вес всех несущих конструкций;
  • Увеличить рентабельность.

Однако, существуют в этой области и отрицательные стороны, например, они касаются повышения финансовой стоимости на все затраты.

Пример расчета двутавра

В первую очередь, для работы следует узнать, сколько сама по себе весит двутавровая балка. Этот параметр исчисляется по двум основным цифрам, отвечающий за номер и длину материала. Если взять в пример, что для строительных работ понадобилась балка под номером 12 и её длина составила 3 мера, то можно без труда рассчитать и её вес.

Заглянув в справочник, в колонке с этими параметрами можно увидеть значение 11,50 кг. Эта цифра обозначает вес одного погонного метра. Таким образом, при умножении условного значения на длину полотна можно узнать собственный вес балки, в этом случае он составит 34, 5 кг.

Также вес двутавровой балки можно узнать с помощью онлайн калькулятора.

ГОСТ

Вес балки – это один из важных показателей, который определяются по ГОСТу. Как известно, в сортаменте указывается только условный вес балки на 1 метр погонного материала. Далее, это значение следует умножить на метраж.

Однако, в современном мире существует множество исходного материала, которого может не быть в справочники. Также возможно и такая ситуация, когда указанное значение будет не соответствовать настоящему размеру балки. Это значение может измениться приблизительно на 2 — 4 процента от исходной массы.

Двутавровые балки с параллельными гранями полок

В справочнике можно увидеть и материал с параллельными гранями полок.

По госту они подразделяются на два вида:

  • Серия Б – нормальные балки, соответствующие номерам с 20Б по 70Б;
  • Материал с подвесными путями, с внутренними гранями до 12 градусов, соответствующее номерам от 18М до 45М.

Также балки подразделяются по виду точности изготовления. Подразделяется два вида:

  • Высокая точность под маркировкой А;
  • Обычная точность под маркировкой Б.

Обычно, такая балка имеет стандартную длину от 4 до 13 метров, по этим величинам можно найти соответствующий вес в справочнике.

Стандартные балки с параллельными гранями полок

Существует несколько стандартов балок с параллельными гранями, соответствующие закону, принятому от 1 января 1986 года:

  • Высота материала может достигать от 10 до 1000 мм;
  • Ширина полотна варьируется от 50 до 400 мм;
  • Существуют колонные, широкополочные и нормальные балки этого вида.

Также в строительном справочнике можно найти ряд значений, например, сечение и линейная плотность. Каждому показателю соответствуют и допустимые отклонения.

Масса балки нормальной

Масса нормальной балки колеблется от 21 до 105,5 кг.

На этот показатель влияют следующие параметры:

  • Номер профиля, для этого критерия в справочнике присутствуют показатели категорий от 20Б1 до 60Б2;
  • Размеры – в таблице приведены 4 вида: h, b, s, t.

Помимо показателей в килограммах можно также найти значение, указанное в тоннах.

Масса балки широкополочной

Широкополочные балки использую только для создания перекрытий. Стоит заметить, что они должны укрепляться на опору в двух местах на месте изгиба.

Этот материал делится на два вида:

  • Нерезаный материал;
  • Резанный материал.

Всего изготавливают два вида полок, они выпускаются под маркировками Ш1 и Ш2. Масса балки может составлять от 30 кг до 300 кг. В стандартных таблицах также приведено это значение в тоннах, оно составляет от 3 до 32 тонн.

Этот показатель изменяется в зависимости от:

  • Номера двутавра, он классифицируется от 20Ш1 до 70Ш5;
  • Размера: h, b, s, t, каждый показатель изменяется в миллиметрах.
Масса балки колонной

Существует несколько показателей, характеризующих массу балки:

  • Номеру 10 соответствует 9, 46 кг на 1 погонный метр.

Далее эта цифра изменяется в зависимости от номера двутавра, например для 14 балки соответствует масса 13,70. Самый большой вес имеет балка 60, он составляет 108 кг.

Стоит заметить, что именно этот материал, чаще всего, применяется в современном строительстве. Они представляют собой балку, у которой присутствует две параллельные грани. Сами эти балки имеют мощную толщину, что позволяет ей выдержать даже самую сильную нагрузку. Однако существуют и некоторые отклонения от нормы, указанной в стандарте, например, кривизна составляет до 0,2 процента.

Масса узкополосной балки

Удельная масса узкополосной балки на 1 погонный метр колеблется от 28,5 до 93,1 кг. При покупке этого материала его легко выделить среди другого, он обозначаем маркировкой под буквой «У». Этот материал легко выдает себя и по внешнему виду, у него присутствует полка, которая имеет самый маленький размер по сравнению с другими двутаврами.

На сегодняшний день строительство мощных конструкций – это важный этап в жизни. Число населения и потребностей людей постоянно увеличивается, поэтому требуется создавать новые здания для того, чтобы постоянно создавались новые ресурсы.

Все большей популярностью именно двутавровые балки, так как они обладают большой мощностью, чем другие подобные конструкции. Благодаря широкому ассортименту материала, их можно применять для строительства конструкции абсолютно любого размера.

Благоприятным фактором является и то, что они легко поддаются обработке и у строителей практически не возникает сложности в этим этапом.

Также актуальность балок вызвана тем, что они легко принимают дополнительные элементы, и таким образом можно увеличить жесткость балки, а соответственно и максимальную нагрузку, которую она сможет выдержать.

Цена двутавровой балки зависит от технических параметров и материала изготовления.

Несущая способность

Основным показателем балки является её несущая способность. Стоит заметить, что двутавр – это тот материал, который обладает максимальной прочностью. Также для него совершенно не страшны резкие перепады температур, выпадение осадков и передвижения земельного покрова.

При покупке и строительстве балки можно увидеть маркировку, именно эта цифра отвечает за максимально возможную на неё нагрузку. Также это значение можно вычислить по справочнику, указав в нем номер материала. Несложно догадаться, что чем больше цифра маркировки, то большую нагрузку может выдержать балка.

Вычислить несущую способность конструкции можно и самостоятельно, но для этого потребуется сделать ряд сложнейших расчетов. Если взять в пример балку с сечением 510 мм, то на неё можно поставить профиль, ширина которого не будет превышать 460 мм. В таком случае искомый материал выступит в качестве основы.

Для балки также необходимо наличие железобетонной основы, к которой она крепится при помощи сварочного аппарата. Этот показатель также может влиять на максимальную нагрузку.

Какую нагрузку способна выдержать балка можно узнать следующим образом: Все перекрытия, входящие в основу конструкции требуется сложить. Эту сумму нужно умножить на коэффициент прочности, который также можно узнать по справочнику. К полученному результату следует прибавить массу собственного веса, которая рассчитывается как в указанном примере, и вычесть из него момент сопротивления. Получив окончательную цифру возможной нагрузки, можно приступить к подбору основного материала для сооружения.

Усиление

Встречаются и такие ситуации, когда несущей способности не хватает для того, чтобы построить здание. Например, этот показатель не удовлетворяет критериям выбора материала. В таком случае, саму балку можно усилить.

  1. В первую очередь, нужно выяснить, какие элементы в конструкции отвечают за такие требования как сжатие, растяжение и изгиб;
  2. Далее, требуется увеличить сечение исходного материала на этом месте. Обычно, это делается при помощи сварочного аппарата, наваривая дополнительные части. Таким образом, увеличивается несущая способность балки, и она уже может выдержать больше нагрузки.

Прежде чем увеличивать жесткость двутавра, необходимо сверить, действительно ли правильно были сделаны расчеты ранее.

 

krovlya777.ru

Несущая способность – балка – Большая Энциклопедия Нефти и Газа, статья, страница 2

Несущая способность – балка

Cтраница 2

Для восстановления несущей способности балки было рекомендовано про вести ее реконструкцию с обязательной проверкой на резонанс с частотой колебаний 100 гц.  [16]

Если требуется повысить несущую способность балок, но нельзя применить большие сечения, обе балки соединяют вместе таким образом, чтобы они работали как один элемент. Ошибкой было бы полагать, что таким путем можно вдвое увеличить несущую способность балок, поскольку может возникнуть взаимное смещение соединяемых элементов, сдвиг или выпучивание. С целью увеличения несущей способности балок их укладывают одну на другую и получают так называемую решетку.  [17]

При действии этой нагрузки несущая способность балки еще не исчерпана. Этому этапу – от образования первого пластического шарнира до второго – соответствует эпюра Мж ( AF) на рис. 14.36, г. При возникновении второго пластического шарнира ( в сечении В) несущая способность балки будет исчерпана – балка обращается в механизм.  [18]

Влияние фактора устойчивости на несущую способность балок сказывается в значительно меньшей мере, чем в стойках. Поэтому в ригелях желательно обеспечивать благоприятные условия для развития пластических деформаций.  [20]

Как видно из формулы (7.52), несущая способность балки пропорциональна моменту сопротивления WKM, а расход материала – площади F поперечного сечения балки. Поэтому рациональными с точки зрения расхода материала являются такие типы сечений, у которых отношение WJF имеет возможно большее значение.  [21]

Как видим, при заданном диаметре отверстия несущая способность балки не изменится.  [22]

В случае, если есть опасность снижения несущей способности балки из-за потери устойчивости, в расчетную формулу (5.16) вводится коэффициент ( рб указанный в прилож.  [23]

Большой интерес представляет экспериментальное изучение устойчивости и несущей способности балок значительного пролета с гибкой подвеской, которые в СССР применения еще не находят.  [25]

Для хрупких материалов это условие действительно ограничивает несущую способность балки, так как дальнейшее увеличение нагрузки может вызвать появление трещин и последующее разрушение детали.  [26]

Для пластичных материалов при этом условии не исчерпывается несущая способность балки, так как по мере увеличения нагрузки крайние волокна начинают пластически деформироваться в связи с перераспределением напряжений; несущая способность балки увеличивается до тех пор, пока напряжения во всех волокнах не достигнут предела текучести; в этот момент балка достигнет состояния пластического шарнира. Это и считается предельным состоянием балки при расчетах по способу предельных нагрузок.  [27]

Таково выражение предельного момента, определяющее так называемую несущую способность балки при наличии пластических зон.  [28]

Во многих случаях считают, что при М Afny несущая способность балки еще не исчерпана. Действительно, пластической деформацией охвачены только самые, крайние волокна. Рассмотрим балку прямоугольного или двутаврового сечения в ситуации, когда изгибающий момент М несколько превышает предельный упругий момент Мпу.  [29]

Для пластичных материалов при этом условии не будет исчерпана несущая способность балки, так как по мере увеличения нагрузки крайние волокна начнут пластически деформироваться в связи с перераспределением напряжений; несущая способность балки будет увеличиваться до тех пор, пока напряжения во всех волокнах не достигнут предела текучести; в этот момент балка достигнет состояния, соответствующего наличию пластического шарнира.  [30]

Страницы:      1    2    3    4

www.ngpedia.ru

Несущая способность металлической балки – Доктор Лом

Несущая способность однопролетной металлической балки при равномерно распределенной нагрузке и шарнирном закреплении на опорах

1. Например, мы в качестве балок ддя перекрытия помещения размерами 4 на 6 метров использовали 4 профильных трубы сечением 100х100 мм с толщиной стенки 5 мм. Тогда длина пролета балки составит l = 4 м, а шаг балок 6/5 = 1.2 м. Согласно сортаменту для квадратных профильных труб момент сопротивления такой металлической балки составит Wz = 54.19 см3.

2. Расчетное сопротивление стали следует уточнять у производителя, ну а если оно точно не известно, то можно принимать наименьшее из возможных, т.е. R = 2000 кг/см2.

3. Тогда максимальный изгибающий момент, который может выдержать такая балка:

M = WzR = 54.19·2000 = 108380 кгсм или 1083.8 кгм.

4. При пролете 4 м максимальная распределенная нагрузка на погонный метр составляет:

q = 8M/l2 = 8·1083.8/42 = 541.9 кг/м.

5. При шаге балок 1.2 м (расстоянии между осями балок) максимальная плоская равномерно распределенная нагрузка на квадратный метр составит:

q = 541.9/1.2 = 451.6 кг/м2 (сюда входит и вес балок).

Вот и весь расчет.

Несущая способность однопролетной металлической балки при действии сосредоточенных нагрузок и шарнирном закреплении на опорах

Если на металлические балки перекрытия сверху уложены сначала лаги, а потом уже делается перекрытие по лагам, то на такие металлические балки будет действовать не одна равномерно распределенная нагрузка, а несколько сосредоточенных. Впрочем перевести сосредоточенные нагрузки в эквивалентную равномерно распределенную совсем не сложно – достаточно просто разделить значение равномерно распределенной нагрузки, которую мы уже определили, на коэффициент перехода.

Например, если мы по металлическим балкам уложили лаги через каждые 0.5 метра, то есть всего 4/0.5 +1 = 9 лаг – сосредоточенных нагрузок. При этом крайние лаги можно вообще в расчет не брать и тогда количество сосредоточенных сил будет = 7, а коэффициент перехода от сосредоточенных нагрузок к эквивалентной равномерно распределенной составит γ = 1.142.

Тогда максимальная равномерно распределенная нагрузка, которую может выдержать данная металлическая балка, составит:

q = 451.6/1.142 = 395.4 кг/м2

Конечно же металлические балки могут быть и многопролетными или иметь жесткое закрепление на одной или двух опорах, т.е. быть статически неопределимыми. В таких случаях изменится только формула определения максимального изгибающего момента (см. расчетные схемы для статически неопределимых балок), но весь алгоритм расчета останется таким же.

Двутавр прочность на изгиб. Вес двутавровой балки – важный фактор несущей способности

Технические характеристики металлического профиля необходимы, чтобы их правильно применять в строительстве, ведь несмотря на большое разнообразие сфер применения, суть остается одна – создать надежную несущую конструкцию. Она позволяет преобразовывать архитектуру сооружений:

  • увеличивает ширину пролетов зданий;
  • значительно, примерно на 35%, уменьшить массу несущих конструкций;
  • существенно увеличить рентабельность проектов.

Говоря о достоинствах конструкции, нельзя не отметить и минусы, хотя их немного. Основные из них – это

  • необходимость применять при создании ребер жесткости дополнительную арматуру;
  • достаточно существенные трудозатраты, которые нужны для ее изготовления.

Однако, следует отметить, что с другой стороны дополнительные ребра жесткости дают возможность:

  • уменьшить общую металлоемкость сварной металлоконструкции, так как ощутимо уменьшают толщину стенок. Таким образом удается понизить ее стоимость, но целиком сохранить механические характеристики;
  • помимо этого облегченная конструкция экономична и с точки зрения устройства фундамента, поскольку после снижения общей массы можно использовать фундамент под БМЗ (быстровозводимые здания).


Чтобы найти двутавр, подходящий для конкретного случая, требуется произвести некоторые расчеты. Обычно для этого используют таблицы или онлайн калькуляторы. В их основе лежат заданные два параметра: расстояние от одной стены до другой и будущая нагрузка на строительную конструкцию.

Прочность двутавровой балки определяется такими параметрами, как:

  • длина,
  • метод закрепления,
  • форма,
  • площадь поперечного сечения.

Большее распространение получили изделия с буквой «Н» в сечении.

Жесткость металлической конструкции двутавра в 30 раз превышает жесткость квадратного профиля, а прочность, соответственно, в 7 раз.

Длина данной металлоконструкции бывает разной, к примеру, в случае ГОСТ 8239-89 это 4 –12 метров, то есть в зависимости от сортамента размеры и вес балки двутавровой отличаются. Помимо длины величина веса определяется толщиной металла и размерами граней. Поэтому для выполнения различных расчетов было введено понятие «вес метра балки двутавровой».

При покупке сварной конструкции обязательно требуется расчет на прочность, а для конкретного использования еще и расчет на прогиб. Грамотный расчет нагрузки на двутавровую балку позволит обеспечить устойчивость конструкции к проектным воздействиям, то есть способность воспринимать их без разрушения.

Нагрузка собственного веса

Чтобы определить в случае необходимости вес двутавровой балки пользуются специальными таблицами, где расписаны ее характеристики, к примеру, габариты, марка стали и т. д. В таблице представлена теоретическая масса 1 м профиля.

балка двутавровая размеры и вес (ГОСТ 8239-89)

Пример расчета двутавра

Предположим необходимо рассчитать вес двутавра № 12 длиной в 3 метра . Согласно таблице условная масса погонного метра данного профиля равна 11,50 кг. Если перемножить полученные значения, то получим величину общей массы – 34,5 кг.


Точнее значение веса сварной металлоконструкции можно посчитать, используя специальные онлайн калькуляторы.

В калькуляторе выбирают соответствующий номер двутавра и вводят необходимый метраж. Как видите, полученное значение больше рассчитанного нами на 0,12 кг.

Несущая способность

Среди всех типов балок двутавровая имеет наибольшую прочность, более того, она устойчива к температурным перепадам. Допустимая нагрузка на двутавр бывает указана на маркировке, как размер. Чем больше число, указанное в его наименовании, тем большую нагрузку может воспринимать балка.


Любой расчет предполагает изначальное знание размеров прокатного или сварного профиля, его длины и ширины. Проясним смысл значения ширины на примере самой популярной балочной опоры – колонны.

Предположим, что в сечении колонны лежит квадрат со стороной 510 мм, тогда на нее можно будет опереть профиль, для которого ширина не может превышать 460 мм. Это связано с тем, что двутавр придется приваривать к железобетонной подушке, а для сварочных швов понадобится запас, по крайней мере, в 40 мм.

После определения ширины переходят к выбору профиля и расчету нагрузки, воздействующей на профиль. Она представляет собой совокупность воздействий от перекрытия, а также воздействий временного и постоянного характера.

Нагрузку, выражающую величину нормативной нагрузки, собирают на длину 1 м профиля.

Но, расчет несущей способности двутавровой балки предполагает учет другого воздействия. Чтобы получить расчетную нагрузку, рассчитанное нормативное воздействие умножается на так называемый коэффициент прочности по нагрузке. Остается к результату прибавить уже подсчитанную массу изделия и найти его момент сопротивления.


Полученных данных достаточно, чтобы из сортамента подобрать профиль, необходимый для изготовления сварного профиля. Как правило, с учетом прогиба конструкции рекомендуется выбирать профиль выше на два порядка.

Сварная металлическая конструкция должна использовать примерно 70–80% от максимально допустимого прогиба.

Усиление

Если несущая способность двутавра оказывается недостаточной, то возникает необходимость ее усиления. Для различных элементов сварной конструкции этот вопрос решается по-разному.

К примеру, для элементов, воспринимающих нагрузки типа растяжения, сжатия или изгиба, используют такой вариант усиления: увеличивают сечение, иначе говоря, повышают жесткость, скажем, приварив дополнительные детали.

Теоретически – это один из лучших вариантов усиления, однако, при его реализации не всегда удается получить требуемый результат. Дело в том, что элементы в процессе сварочных работ нагреваются, а это несет за собой уменьшение несущей способности.

В какой степени можно ожидать такого понижения зависит от размеров двутавра и режима и направления сварочных работ. Если для продольных швов максимальное понижение оказывается в пределах 15%, то для швов в поперечном направлении оно может достичь и 40%.

Поэтому при усилении двутавра под нагрузкой категорически запрещено накладывать швы в направлении, поперечном к элементу.

Расчетно и экспериментально было доказано, что оптимального результата усиления под нагрузкой можно получить при максимальном напряжении в 0,8 R y , то есть 80% расчетного сопротивления стали, которая была использована для изготовления двутавра.

01.10.2010, 11:47

расчет:
1) брус 200*200*6000 через 0,5М =22 т.р (прогиб 20 мм)
2) двутавр 20Б ч/з 1,2м =27 т.р. (прогиб 20 мм)

По весу 1) -90 кг брус, 2)- 120 кг балка

В теории решения очень похожи. интересует практика что все таки лучше?

Зеленый Кот

01.10.2010, 11:55

Брус.
Железом вообще не стоит делать любые несущие конструкции ибо при пожаре дерево держится до последнего, а железо – хрясь и готово.

01.10.2010, 15:55

Температура при которой пойдет деформирования двутавр с жизнью несовместима. Тем более если снизу это все будет обшито гипсокартоном.

Если все же решите делать деревом, то советую 200х60х6000 с шагом 600 мм.

01.10.2010, 16:55

“хрясь и готово” – а не все ли равно уже будет)))

Оно может деформироваться в одном месте, и прилететь в другое, где еще остались условия для жизни… 🙂 но в целом вы правы.
+Дерево само по себе будет поддерживать горение, а железо нет…

Зеленый Кот

01.10.2010, 17:41

Температура при которой пойдет деформирования двутавр с жизнью несовместима.
Неправильно.
Одно дело когда он сам по себе, а другое, когда он под нагрузкой.

До недавнего времени вообще было запрщено использовать в качестве стропил мет. профиль, теперь же смотрю делают вовсю.

Советую 200х60х6000 с шагом 600 мм
Малавато будет, малавато – смотрим какулятор.

01.10.2010, 20:32

У меня в одном помещении пролет получился 5,7 метров, перекрытие между 1 и 2 этажом. Я выбрал двутавр 20Б через 1,3 метра, вроде по расчету двутавр был крепче, чем дерево. Стоит учесть что дерево можно найти 6,5 метров, а длина двутавра 11,7 метра или 12 метров (для перекрытия пролета 6 метров надо как минимум 15 см на сторону) . Правильнее было бы уложить плиты, но у меня не получилось. Разница между деревом и двутавром была гдето 10-12%. При кладке стен устанавливал между вырезом в газоблоке и двутавром пенопласт 3 см.
На счет пожара-надо предохроняться.

02.10.2010, 00:47

А я на 6 м пролет положил 5,8 метровую жб плиту и ни о чем больше не задумываюсь. Не горит, не плавится, не гнется…

02.10.2010, 09:00

Спасибо всем, я все таки склоняюсь к двутавру,поскольку он прочнее, я на перекрытие хочу стены внутренние из пеноблока 100 см поставить. (хотя наверное можно было по 2 бруса под стену положить)
то wawan001 пролет 6М это по осям стен, то есть по 15 см с каждой стороны опора будет.
то Кот, я предполагаю если засыпать негорючий утеплитель аля керамзит то гореть там вообще нечему будет (дом из пеноблока).

И еще вопрос если перекрывать двутавром можно ли вместо крайних балок использовать деревянную скажем 50-ку закрепленную к боковым стенам??

02.10.2010, 18:30

Есть другой вариант.

02.10.2010, 19:12

Есть другой вариант.
Делаете несущую балку (пускай из двутавра), на которую укладываете простые деревянные балки перекрытия. Это гораздо дешевле выйдет.
Двутавров понадобится один-два, но мощных. По цене все равно выйдет дешевле.

Я так себе сделал

02.10.2010, 20:01

dengt , у меня эта идея приходила в голову с точки зрения технологичности устройства в будущем полов, если деревянные перекрытия устанавливать внутрь двутавра, а по верх делать контробрешетку (балки по расчету). Расстояние от края балки до двутавра 40 см- надежно. Ведь по расчетам на крайнии балки нагрузка меньше раза в 2 чем на соседнию, можно положить балку 150х200 или взять 2 штуки доски 50х200 и между ними установить отрезки доски того же размера длиной 1,5 метра, а 50-ка думаю хлипковата, хотя если к стене притянуть может и нормально будет. Если уверен в крепеже то наверное да.

04.10.2010, 05:57

Я перекрывал пролет 5м брусом 150*150 сложенным вдвое и стянутым шпильками, т.е. получилась балка 150*300. Получилось довольно жестко, но я бы все равно сделал из бетона, если бы была возможность:(

05.10.2010, 09:32

[
я так себе сделал
пролет 11 на 6, разделил на три части двумя двутаврами и уложил деревянные балки, а что бы не увеличивать толщину перекрытия уложил их внутрь тавра. Предварительно приварил уголки к тавру и закрепил балки на болты.

Я так понимаю двутавры 6-ти метровые были?
тут уже 25Б2 минимум нужен, это на 5 см толще перекытие, вроде не смертельно.

По поводу закрепления боковых балок к стенам меня беспокоит то, что все остальные балки будут прогибаться а крайние нет, тогда перекытие прогнется “”пузырем”? к чему это приедет?

05.10.2010, 10:11

двутавр 6-ти меровый 20Б1 – две штуки поперек длины, получилось 3 зоны, две с опиранием балок одной стороны на стену, а второй на двутавр, и одна зона с балками зажатыми между двутаврами. Прогибания не заметил, двутавр на такой длине не ходит.

06.10.2010, 13:06

06.10.2010, 13:47

смотря как грузить, если по теории 400 кг/м то в вашем случае 20Б1 прогнется на 77 мм

Интересно как Вы это посчитали?

Балка 20 . Применение. Виды. Расчёт двутавра .

Двутавровая балка – прокат, имеющий сечение буквы Н и означающий с латинского языка – «двурогая» с двух сторон («тавр» – бык). Расстояние между полками называют высотой, у двутавра 20го высота составляет около 200 мм или 20 см. Двутавр – это металлопрокат фасонного типа, изготавливаемый из строительной стали – ст3 и низколегированной стали 09Г2С.

Балка двутавровая 20 наиболее распространена в применении у строителей и монтажников, в первую очередь при устройстве каркасов с большими пролётами в зданиях, для перераспределения нагрузки с перекрытий на несущие конструкции. Её используют для мостостроительства, изготовления кранов, автомобилей, трубопроводов, самолётных ангаров, в железнодорожном строительстве и т. д. 20й профиль производят по 8239 ГОСТ двутавры стальные , госстандарту 26020-83, двутавр гост 19425-74 и техническим условиям СТО АСЧМ 20-93.

Двутавр 20й подразделяют по СТО АСЧМ 20 на нормальную балку 20Б с параллельными гранями полок, широкополочную балку 20Ш и 20К – для колонн. Двутавр СТО АСЧМ 20-93 с высотой 20 см имеет грани полок, которые параллельны. СТО двутавр производится НЛМК, который и разработал данный стандарт. По такому стандарту производится также балка 09Г2С , которая также подразделяется на нормальную балку, колонную и широкополочную. Металлопрокат из низколегированной стали может употребляться как при очень низкой температуре, так и при высоких температурах, не подвергаясь деформации.

Двутавр стальной 20Б1 имеет массу метра – 21,3 килограмм. Масса 20Ш1 составляет 30,6 кг в метре, вес колонной балки 20К1 – 41,4 кг, вес двутавра 20К2 – 49,9 кг. Параметры двутавра 20Б1: высота (h)- 200 мм, ширина полки (b)- 100 мм, толщина стенки (s) – 5,5 мм, толщина полки (t)- 8,0 мм. Широкополочный 20й профиль 20Ш1 имеет следующие характеристики: h – 194 мм, b- 150 мм, s – 6 мм, t – 9 мм. Колонная балка 20К1 обладает h 196 мм, b стенки – 199 мм, s стенки – 6,5 мм, t полки – 10, 0 мм.

Балка 20 по стандарту 19425 может быть монорельсовой (обозначается буквой М) и спец. (именуется буквой С). Этот ГОСТ распространяется на горячекатаные двутавры с полками, имеющими наклон внутренней поверхности полок. Монорельсовый двутавр, известный как кран балка, предназначена для крановых путей, как несущий мост в козловом или мостовом кранах, как подрельсовая балка. Такое изделие характеризуется высокой прочностью и способно противостоять большим нагрузкам, давлению, скручиванию. Специальная балка применима в стволе конструкций, которые обеспечивают движение подъёмных стволов, то есть для армирования стволов шахт, а также в сооружении лестниц и прокладке инженерных коммуникаций, креплении водоотливов.

Специальный профиль 20С имеет следующие параметры – двутавр размеры : высоту – 200мм, ширину полки – 100 мм, толщину стенки – 7 мм, толщину полки – 11,4 мм. Масса 1 м такого двутавра составляет 27,9 кг. Вес погонного метра балки в таблицах теоретический, он нужен для того,чтобы рассчитать самостоятельно вес целой балки или необходимое количество метров и штук двутавра. Итак, если балка 20 на складе металлоторгующей компании имеется длиной 12м, то чтобы выяснить вес одного хлыста, нужно двутавр вес 1 метра 27,9 умножить на 12м. Зная общее количество метров балки, легко можно посчитать общий вес необходимого металлопроката. На практике это лучше всего выяснить, уточнив у менеджеров компании АО «Металлоторг», которые кроме того подскажут стоимость металла, двутавр цена за метр, выпишут счёт, чтобы двутавр купить , и решат все текущие вопросы по загрузке и доставке.

Двутавр ГОСТ 8239 89 – на сортамент двутавров , имеющий отличие – наклон внутренних поверхностей полок. Такая балка с расстоянием между полками 200 мм имеет ширину этих полок – 100 мм, толщину металла посередине высоты – 5,2 мм, толщину полок 8,4 мм.

Какой двутавр лучше? Горячекатаный двутавр или сварной?

Чтобы выбрать между горячекатаной балкой 20 и сварным профилем с похожими параметрами, вычиляют момент сопротивления. Для этого учитывают нагрузку на перекрытие, непрерывную и краткосрочную нагрузку, используют табличные данные – коэффициент прочности и допустимый прогиб для несущих конструкций.

Похожие статьи

Двутавровая балка — существующий выбор

Двутавр (балка двутавровая) — разновидность сортового металлопроката, отличающаяся высокой несущей способностью. Имеет узнаваемое Н-образное сечение, которое и предопределяет технические характеристики изделия. Один из самых востребованных материалов в различных промышленных сферах.

Вы всегда можете ознакомиться на нашем сайте с актуальными ценами на новую двутавровую балку и двутавр б/у.

Назначение и сфера применения

Двутавровые балки используются в качестве несущих элементов при возведении металлоконструкций и в крупнопанельном строительстве. Применение проката данного типа позволяет упростить проектные решения без потери несущей способности сооружений. Чаще всего двутавры используются для решения следующих технических задач:

  • Строительство промышленного и гражданского направления (основная часть используется при сооружении перекрытий и армировании проемов).


     

  • Металлоконструкции колонного типа.


     

  • Возведение мостовых конструкций.


     

  • Армирование шахтных стволов и устройство сопряжений горных выработок.

Допускается применение балок этого типа при сооружении любых конструкций, к которым предъявляются повышенные требования по несущей способности. Рекомендовано размещение двутавра в теле бетонной конструкции, при открытом монтаже требуется обязательная антикоррозийная обработка.

Преимущества изделия

Специфическая форма сечения обеспечила отличную несущую способность этого конструктивного элемента. По сравнению со стандартными прямоугольными профилями двутавр обладает повышенной в 7 раз прочностью и более чем в 30 раз жесткостью. По своим конструктивным особенностям двутавр близок швеллеру, но последний в основном используется при возведении более легких конструкций, он не сможет эффективно работать при значительной нагрузке.

Массовость применения двутавровых балок определена следующими преимуществами.

  • Высокая устойчивость к деформациям на изгиб и кручение.
  • Повышенная несущая способность.
  • Уменьшенный вес по сравнению с другими типами металлопроката с аналогичными техническими характеристиками.

Особенности производства

На практике применяют две основных методики изготовления двутавровых балок.

  1. Технология горячего проката, позволяющая обеспечить выпуск изделий в промышленных масштабах.
  2. Изготовление двутавров с применением сварочных технологических линий. Сварные балки отличаются более точной геометрией, но уступают горячекатаным по некоторым техническим параметрам.

Производство данного вида несущих конструктивных элементов осуществляется с применением высокоуглеродистых низколегированных сталей, что предопределяет обязательную антикоррозийную обработку при открытом монтаже.

В соответствии с ГОСТ 27772-88, регламентирующим производство горячекатаного фасонного проката, для изготовления двутавров должна применяться сталь следующих марок: С 235, 245, 255, 275, 285, 345, 345К, 375.

Существующие классы и соответствующие ГОСТы

Все выпускаемые методом проката разновидности двутавров можно разделить на три основных класса, требования к которым определяются действующими стандартами.

  1. Горячекатаные стальные с углом наклона полок 6-120 в соответствии с ГОСТ 8239-89.
  2. Стальные специальные с углом внутренних граней 12 или 16 градусов по ГОСТ 19425-74. Двутавр с гранью в 16 градусов отличается повышенной несущей способностью и прочностью. Элементы из таких балок используют в особо сложных условиях эксплуатации, например, при армировании шахтных стволов. 
  3. Горячекатаные стальные с параллельным направлением полок на основании ГОСТ 26020-83.

Сварные изделия выпускаются на основании технических условий производителя ТУ У 01412851.001-95. Отдельные производители используют свои собственные ТУ для производства того или иного типа двутавров.

По особенностям сечения выделяют следующие категории продукции:

  • Балки с нормальной шириной полок (Б).
  • Двутавры с увеличенной шириной полок (Ш).
  • Колонные двутавровые балки (К).
  • Монорельсовые двутавры (М).
  • Балки специальной серии для особо сложных условий (С).

Производители осуществляют отгрузку партий с кратной, кратной мерной, немерной длиной двутавров. Стандартные размеры предполагают изготовление изделий длиной от 4 до 13 метров, производство балок, выходящих за пределы указанных параметров, может быть организовано по согласованию непосредственно с производителем.

Особенности расчета потребности

При определении количества необходимого для различных конструкций материала, выбора способа транспортировки необходимо знать соотношение размеров и массы двутавровых балок. Необходимость перевода одной величины в другую возникает так же при разработке проектной документации.

Решить данную проблему можно при помощи онлайн калькуляторов, а в случае их отсутствия рекомендуется воспользоваться специальными таблицами, приведенными в нормативных документах.

Так для горячекатаных стальных двутавров соотношение приведено в следующей таблице.

А для определения общей площади поверхности двутавров того же ГОСТа, рекомендуем воспользоваться следующей таблицей.


Такие справочные данные существенно упростят расчет и разработку проектной документации.

 

 

Какую нагрузку выдержит двутавр 20

Двутавр – вид фасонного металлопроката, способный принимать большие нагрузки, по сравнению с уголком и швеллером. В частном строительстве металлопрокат с сечением Н-образного профиля используется только при создании крупногабаритных строений. Для выбора подходящего номера двутавровой балки производят профессиональные расчеты на прочность и прогиб с помощью формул или с использованием онлайн-калькулятора. Исходными данными являются: длина пролета, тип закрепления балки, характер нагрузки, планируемый шаг размещения профильного проката, наличие или отсутствие дополнительных опор, марку стали.

Выбор типа балки, в зависимости от запланированных нагрузок

Производители предлагают металлические двутавры с несколькими типами поперечного сечения, предназначенные для различных эксплуатационных условий. Такая продукция, в зависимости от типа сечения, может применяться в крупногабаритном жилищном строительстве, при возведении зданий промышленного и гражданского назначения, в мостостроении. Для каждого из них в соответствующем стандарте имеется таблица, в которой указаны размерные параметры, масса 1 м, момент и радиус инерции, момент сопротивления. Эти характеристики используются в расчетах на прогиб и прочность.

С уклоном внутренних граней полок 6-12 %

Производство этого металлопроката регламентируется ГОСТом 8239-89. Благодаря скруглению внутренних граней около стенки, обладают высокой прочностью и устойчивостью к прилагаемым усилиям.

С параллельными внутренними гранями полок

Эта продукция выпускается в соответствии с ГОСТом 26020-83, выделяют следующие типы:

  • Б – нормальный. Применяется для эксплуатации под средними нагрузками.
  • Ш – широкополочный. Может использоваться для разрезки по продольной оси для получения таврового профиля. Тавр укладывается на один пролет. Целый двутавровый профиль – на один или несколько пролетов. Эти металлоизделия очень массивны. Плюсом их использования является возможность использования в качестве самостоятельного элемента без применения усиливающих деталей.
  • К – колонный. Это наиболее массивные профили. Имеют широкие, утолщенные полки и стенки. Применяются при устройстве большепролетных конструкций.

Типовые схемы расположения двутавра

Один из исходных параметров, учитываемых в расчетах, – схема закрепления балки и вид прилагаемой нагрузки. Большинство вариантов сводится к основным схемам:

Сбор нагрузок

Перед началом расчета производят сбор сил, действующих на двутавровую балку. В зависимости от продолжительности воздействия,их разделяют на временные и постоянные.

Таблица нагрузок на двутавровые балки

Постоянные Собственная масса балки и перекрытия. В упрощенном варианте вес межэтажного перекрытия без цементной стяжки с учетом массы балки принимают равным 350 кг/м 2 , с цементной стяжкой – 500 кг/м 2
Длительные Полезные Зависят от назначения здания
Кратковременные Снеговые, зависят от климатических условий региона
Особые Взрывные, сейсмические. Для балок, работающих в стандартных эксплуатационных условиях, не учитываются. В онлайн-калькуляторах обычно не учитываются

Нагрузки разделяют на нормативные и расчетные. Нормативные устанавливаются строительными нормами и правилами. Расчетные равны нормативной величине, умноженной на коэффициент надежности. При усилии менее 200 кг/м 2 коэффициент обычно принимают равным 1,3, при более 200 кг/м 2 – 1,2. Шаг между балками принимают равным 1 м. В некоторых случаях, если это допустимо в конкретных эксплуатационных условиях, в целях экономии материалов его принимают равным 1,1 или 1,2 м.

При расчетах принимают во внимание марку стали. Для использования в условиях высоких нагрузок и при минусовых температурах востребованы двутавровые балки, изготовленные из низколегированных сталей.

Способы выбора оптимального размера сечения профиля

Наиболее точным вариантом подбора номера и типа двутаврового профиля является проведение профессиональных расчетов. Именно этот способ применяется при проектировании ответственных крупногабаритных объектов. При строительстве небольших зданий можно воспользоваться онлайн-калькулятором.

Для примерного определения размера профиля можно воспользоваться таблицей соответствия номера двутавровой балки максимально допустимой нагрузке:

Общая нагрузка, кг/м 2 Длина пролета
3 м при шаге, м 4 м при шаге, м 6 м при шаге, м
1,0 1,1 1,2 1,0 1,1 1,2 1,0 1,1 1,2
300 10 10 10 10 12 12 16 16 16
400 10 10 10 12 12 12 20 20 20
500 10 12 12 12 12 12 20 20 20

Из этой таблицы видно, что для двутавровой балки номер 10 максимальная длина пролета составляет 4 м при шаге 1,2 м, нагрузка – 400 кг/м 2 , для номера 16 длина пролета может достигать 6 м, нагрузка, которую он может выдержать, – 300 кг/м 2 , для профиля 20 – 6 м и нагрузка 400 кг/м 2 .

Двутавровая балка — прокат, имеющий сечение буквы Н и означающий с латинского языка — «двурогая» с двух сторон («тавр» — бык). Расстояние между полками называют высотой, у двутавра 20го высота составляет около 200 мм или 20 см. Двутавр — это металлопрокат фасонного типа, изготавливаемый из строительной стали — ст3 и низколегированной стали 09Г2С.

Балка двутавровая 20 наиболее распространена в применении у строителей и монтажников, в первую очередь при устройстве каркасов с большими пролётами в зданиях, для перераспределения нагрузки с перекрытий на несущие конструкции. Её используют для мостостроительства, изготовления кранов, автомобилей, трубопроводов, самолётных ангаров, в железнодорожном строительстве и т. д. 20й профиль производят по 8239 ГОСТ двутавры стальные , госстандарту 26020-83, двутавр гост 19425-74 и техническим условиям СТО АСЧМ 20-93.

Двутавр 20й подразделяют по СТО АСЧМ 20 на нормальную балку 20Б с параллельными гранями полок, широкополочную балку 20Ш и 20К — для колонн. Двутавр СТО АСЧМ 20-93 с высотой 20 см имеет грани полок, которые параллельны. СТО двутавр производится НЛМК, который и разработал данный стандарт. По такому стандарту производится также балка 09Г2С , которая также подразделяется на нормальную балку, колонную и широкополочную. Металлопрокат из низколегированной стали может употребляться как при очень низкой температуре, так и при высоких температурах, не подвергаясь деформации.

Двутавр стальной 20Б1 имеет массу метра — 21,3 килограмм. Масса 20Ш1 составляет 30,6 кг в метре, вес колонной балки 20К1 — 41,4 кг, вес двутавра 20К2 — 49,9 кг. Параметры двутавра 20Б1: высота (h)- 200 мм, ширина полки (b)- 100 мм, толщина стенки (s) — 5,5 мм, толщина полки (t)- 8,0 мм. Широкополочный 20й профиль 20Ш1 имеет следующие характеристики: h — 194 мм, b- 150 мм, s — 6 мм, t — 9 мм. Колонная балка 20К1 обладает h 196 мм, b стенки — 199 мм, s стенки — 6,5 мм, t полки — 10, 0 мм.

Балка 20 по стандарту 19425 может быть монорельсовой (обозначается буквой М) и спец. (именуется буквой С). Этот ГОСТ распространяется на горячекатаные двутавры с полками, имеющими наклон внутренней поверхности полок. Монорельсовый двутавр, известный как кран балка, предназначена для крановых путей, как несущий мост в козловом или мостовом кранах, как подрельсовая балка. Такое изделие характеризуется высокой прочностью и способно противостоять большим нагрузкам, давлению, скручиванию. Специальная балка применима в стволе конструкций, которые обеспечивают движение подъёмных стволов, то есть для армирования стволов шахт, а также в сооружении лестниц и прокладке инженерных коммуникаций, креплении водоотливов.

Специальный профиль 20С имеет следующие параметры — двутавр размеры : высоту — 200мм, ширину полки — 100 мм, толщину стенки — 7 мм, толщину полки — 11,4 мм. Масса 1 м такого двутавра составляет 27,9 кг. Вес погонного метра балки в таблицах теоретический, он нужен для того,чтобы рассчитать самостоятельно вес целой балки или необходимое количество метров и штук двутавра. Итак, если балка 20 на складе металлоторгующей компании имеется длиной 12м, то чтобы выяснить вес одного хлыста, нужно двутавр вес 1 метра 27,9 умножить на 12м. Зная общее количество метров балки, легко можно посчитать общий вес необходимого металлопроката. На практике это лучше всего выяснить, уточнив у менеджеров компании АО «Металлоторг», которые кроме того подскажут стоимость металла, двутавр цена за метр, выпишут счёт, чтобы двутавр купить , и решат все текущие вопросы по загрузке и доставке.

Двутавр ГОСТ 8239 89 — на сортамент двутавров , имеющий отличие — наклон внутренних поверхностей полок. Такая балка с расстоянием между полками 200 мм имеет ширину этих полок — 100 мм, толщину металла посередине высоты — 5,2 мм, толщину полок 8,4 мм.

Какой двутавр лучше? Горячекатаный двутавр или сварной?

Чтобы выбрать между горячекатаной балкой 20 и сварным профилем с похожими параметрами, вычиляют момент сопротивления. Для этого учитывают нагрузку на перекрытие, непрерывную и краткосрочную нагрузку, используют табличные данные — коэффициент прочности и допустимый прогиб для несущих конструкций.

Технические характеристики металлического профиля необходимы, чтобы их правильно применять в строительстве, ведь несмотря на большое разнообразие сфер применения, суть остается одна – создать надежную несущую конструкцию. Она позволяет преобразовывать архитектуру сооружений:

  • увеличивает ширину пролетов зданий;
  • значительно, примерно на 35%, уменьшить массу несущих конструкций;
  • существенно увеличить рентабельность проектов.

Говоря о достоинствах конструкции, нельзя не отметить и минусы, хотя их немного. Основные из них – это

  • необходимость применять при создании ребер жесткости дополнительную арматуру;
  • достаточно существенные трудозатраты, которые нужны для ее изготовления.

Однако, следует отметить, что с другой стороны дополнительные ребра жесткости дают возможность:

  • уменьшить общую металлоемкость сварной металлоконструкции, так как ощутимо уменьшают толщину стенок. Таким образом удается понизить ее стоимость, но целиком сохранить механические характеристики;
  • помимо этого облегченная конструкция экономична и с точки зрения устройства фундамента, поскольку после снижения общей массы можно использовать фундамент под БМЗ (быстровозводимые здания).

Чтобы найти двутавр, подходящий для конкретного случая, требуется произвести некоторые расчеты. Обычно для этого используют таблицы или онлайн калькуляторы. В их основе лежат заданные два параметра: расстояние от одной стены до другой и будущая нагрузка на строительную конструкцию.

Прочность двутавровой балки определяется такими параметрами, как:

  • длина,
  • метод закрепления,
  • форма,
  • площадь поперечного сечения.

Большее распространение получили изделия с буквой «Н» в сечении.

Жесткость металлической конструкции двутавра в 30 раз превышает жесткость квадратного профиля, а прочность, соответственно, в 7 раз.

Длина данной металлоконструкции бывает разной, к примеру, в случае ГОСТ 8239-89 это 4 –12 метров, то есть в зависимости от сортамента размеры и вес балки двутавровой отличаются. Помимо длины величина веса определяется толщиной металла и размерами граней. Поэтому для выполнения различных расчетов было введено понятие «вес метра балки двутавровой».

При покупке сварной конструкции обязательно требуется расчет на прочность, а для конкретного использования еще и расчет на прогиб. Грамотный расчет нагрузки на двутавровую балку позволит обеспечить устойчивость конструкции к проектным воздействиям, то есть способность воспринимать их без разрушения.

Нагрузка собственного веса

Чтобы определить в случае необходимости вес двутавровой балки пользуются специальными таблицами, где расписаны ее характеристики, к примеру, габариты, марка стали и т. д. В таблице представлена теоретическая масса 1 м профиля.

балка двутавровая размеры и вес (ГОСТ 8239-89)

Пример расчета двутавра

Предположим необходимо рассчитать вес двутавра № 12 длиной в 3 метра . Согласно таблице условная масса погонного метра данного профиля равна 11,50 кг. Если перемножить полученные значения, то получим величину общей массы – 34,5 кг.

Точнее значение веса сварной металлоконструкции можно посчитать, используя специальные онлайн калькуляторы.

В калькуляторе выбирают соответствующий номер двутавра и вводят необходимый метраж. Как видите, полученное значение больше рассчитанного нами на 0,12 кг.

Несущая способность

Среди всех типов балок двутавровая имеет наибольшую прочность, более того, она устойчива к температурным перепадам. Допустимая нагрузка на двутавр бывает указана на маркировке, как размер. Чем больше число, указанное в его наименовании, тем большую нагрузку может воспринимать балка.

Любой расчет предполагает изначальное знание размеров прокатного или сварного профиля, его длины и ширины. Проясним смысл значения ширины на примере самой популярной балочной опоры – колонны.

Предположим, что в сечении колонны лежит квадрат со стороной 510 мм, тогда на нее можно будет опереть профиль, для которого ширина не может превышать 460 мм. Это связано с тем, что двутавр придется приваривать к железобетонной подушке, а для сварочных швов понадобится запас, по крайней мере, в 40 мм.

После определения ширины переходят к выбору профиля и расчету нагрузки, воздействующей на профиль. Она представляет собой совокупность воздействий от перекрытия, а также воздействий временного и постоянного характера.

Нагрузку, выражающую величину нормативной нагрузки, собирают на длину 1 м профиля.

Но, расчет несущей способности двутавровой балки предполагает учет другого воздействия. Чтобы получить расчетную нагрузку, рассчитанное нормативное воздействие умножается на так называемый коэффициент прочности по нагрузке. Остается к результату прибавить уже подсчитанную массу изделия и найти его момент сопротивления.

Полученных данных достаточно, чтобы из сортамента подобрать профиль, необходимый для изготовления сварного профиля. Как правило, с учетом прогиба конструкции рекомендуется выбирать профиль выше на два порядка.

Сварная металлическая конструкция должна использовать примерно 70–80% от максимально допустимого прогиба.

Усиление

Если несущая способность двутавра оказывается недостаточной, то возникает необходимость ее усиления. Для различных элементов сварной конструкции этот вопрос решается по-разному.

К примеру, для элементов, воспринимающих нагрузки типа растяжения, сжатия или изгиба, используют такой вариант усиления: увеличивают сечение, иначе говоря, повышают жесткость, скажем, приварив дополнительные детали.

Теоретически – это один из лучших вариантов усиления, однако, при его реализации не всегда удается получить требуемый результат. Дело в том, что элементы в процессе сварочных работ нагреваются, а это несет за собой уменьшение несущей способности.

В какой степени можно ожидать такого понижения зависит от размеров двутавра и режима и направления сварочных работ. Если для продольных швов максимальное понижение оказывается в пределах 15%, то для швов в поперечном направлении оно может достичь и 40%.

Поэтому при усилении двутавра под нагрузкой категорически запрещено накладывать швы в направлении, поперечном к элементу.

Расчетно и экспериментально было доказано, что оптимального результата усиления под нагрузкой можно получить при максимальном напряжении в 0,8 R y , то есть 80% расчетного сопротивления стали, которая была использована для изготовления двутавра.

Доброго времени участникам сообщества, помогите подобрать двутавр на гараж, опор на пролёте не будет, подвешивать на него ничего не буду

Смотрите также

Комментарии 39

Почему-то изначально заложена одна ферма, на которую приходится вся снеговая и конструкционная нагрузка. гораздо рациональней распределить нагрузку на три — четыре фермы с поперечным сечением 300 мм., из профтрубы 40х25 с подкосами из арматуры 14 мм. Фермы при монтаже связать между собой поперечными связями для устойчивости. Потом на них можно настелить пол второго этажа. Вот как-то так. А вообще-то выше уже прозвучало предложение обратиться к инженерам. На Вашем турбогенераторном они еще не перевелись.
Привет Лысьве! Был у вас в командировке лет 40 назад…

Есть такой калькулятор vladirom.narod.ru/stoves/beamcalc.html правда для деревянных балок, у вас они вроде как присутствуют, может пригодиться! А вообще лучше заплатите фирме, пусть вам посчитают, это достаточно быстро и по деньгам скорее всего выйдет не более 1-2 т.р.

Ох уж эти советчики. Чего только не навыдумывают.
г.Пермь — 5 снеговой район = 320кг/м2.
Конструкция перекрытия из дерева = 15кг/м2
Полезная нагрузка на перекрытие (люди, мебель) = 100кг/м2
Конструкция крови (на всидку) = 30кг/м2
Грузовая площадь балки = 6,61м х (7,61/2) = 25,2м2.
Общая нагрузка на всю длину балки = 465кг * 25,2м2 = 11,7т.
Равномерно-распределенная нагрузка = 11,7т / 6,61м = 1,78т. (на метр погонный).

Результат подбора элементов:
— Двутавр — 40Б1.
— Двутавр — 30Ш1.
— Двутавр — 20К2.
-Швеллер — Подбор произвести не удалось. Велики прогибы.

Советую использовать 30Ш1 — у него ширина полки больше. легче будет опирание делать.
Незачто.

Ох уж эти советчики. Чего только не навыдумывают.
г.Пермь — 5 снеговой район = 320кг/м2.
Конструкция перекрытия из дерева = 15кг/м2
Полезная нагрузка на перекрытие (люди, мебель) = 100кг/м2
Конструкция крови (на всидку) = 30кг/м2
Грузовая площадь балки = 6,61м х (7,61/2) = 25,2м2.
Общая нагрузка на всю длину балки = 465кг * 25,2м2 = 11,7т.
Равномерно-распределенная нагрузка = 11,7т / 6,61м = 1,78т. (на метр погонный).

Результат подбора элементов:
— Двутавр — 40Б1.
— Двутавр — 30Ш1.
— Двутавр — 20К2.
-Швеллер — Подбор произвести не удалось. Велики прогибы.

Советую использовать 30Ш1 — у него ширина полки больше. легче будет опирание делать.
Незачто.

А вместо балки “Двутавр — 30Ш1” — не дешевле рассчитать и сварить ферму? Ферма без расчета может обойтись на 50-100% дороже из-за применения слишком крупного профиля.

Не выдумывайте ерунду.
Ферма длинной 6,6м. из уголков в тоннаже будет весить 200-250кг + работа на изготовление фермы. Двутавр весит 380кг. Где тут выгода 100%?
К тому же конструкция фермы имеет высоту 600-800мм, которая скушает высоту потолка. Оно надо?
Не вводите людей в заблуждение если не компетентны в вопросе.
Фермы рационально использовать в здания больших пролетов. Для гаража это абсолютно бессмысленно.
Это я вам как инженер конструктор говорю.

Имел ввиду, что Ферма без расчета может обойтись на 50-100% дороже, чем расчетная ферма.
Как правило без расчета применяют более прочный прокат, чем того требует расчет. И лишний 3-5-ти кратный запас прочности бывает нецелесообразен.

Если бы конструкции крыши не опиралась на балку(перекрытие), легко рассчитать какой швеллер или двутавр применить, а при такой конструкции крыши вся основная масса крыши опирается на рассчитываемую балку.

я бы предпочел два швеллера сварить вместо 2т

Вари ферму. Не придумывай. У меня из 100ки проф трубы но это много. Из 60ки будет норм.

Чтобы избежать в дальнейшем неприятностей в виде обрушения перекрытия или сильного провисания балки и дальнейшего разрушения, я бы доверил сделать расчет инженеру-строителю. А если послушать любителей, то в этот гараж страшно будет заходить (особенно зимой после большой снеговой нагрузки на крышу).

Балка двутавровая стальная – стоимость, сортамент, размеры, расчет на прочность, нагрузка на колонные и широкополочные металлические двутавры 25б1, 09г2с

Как узнать минимальные цены на двутавровую балку

Чтобы узнать стоимость и минимальные цены на двутавровую балку в METAL БЮРО, необходимо в меню выбрать черный металл и кликнуть на ссылку “Балка”. Далее в таблице “Минимальные цены”, используя фильтры характеристик, изучить все цены на требуемые виды стальных балок.

Например, узнаем сколько стоит балка 25Б1, СТО АСЧМ 20-93 по стали 09Г2С. Для этого выбираем в сером фильтре ГОСТ, далее размер 25, потом профиль б1, сталь 09г2с и мерную или немерную длину.

Для быстрого перехода воспользуйтесь нижеуказанными ссылками:

Где используют стальные двутавры

Металлическая балка применяется в различных сферах строительства: в промышленном, гражданском и крупнопанельном для возведения перекрытий, колонных металлоконструкций, мостов, опор и подвесных путей.

Специальную информацию о размерах, несущей способности двутавровой балки, нагрузки на перекрытие и расчет прочности этого проката, вы всегда получите у специалистов METAL БЮРО по телефону +7 (495) 232-2233 или через ответ по заявке на закупку металла.

Виды и технические характеристики балки двутавровой

В METAL БЮРО вы всегда найдете по минимальным ценам балки для строительства:

1. С параллельными гранями полок:

СТО-АСЧМ 20-93 (длина 12 метров)

  • маркировка Б – нормальные
  • (20 Б1, 25Б1, 25 Б2, 30 Б1 Б2, 35 Б1 Б2, 40 Б1 Б2, 45 Б1 Б2, 50 Б1 Б2, 55 Б1 Б2, 60 Б1 Б2)
  • маркировка Ш – широкополочные двутавры
  • (20 Ш1, 25 Ш1, 30 Ш1, 35 Ш1 Ш2, 40 Ш1 Ш2, 45 Ш1 Ш2, 50 Ш1 Ш2, 55 Ш1 Ш2)
  • маркировка К – колонные двутавры
  • (20 К1 К2, 25 К1 К2, К3, 30 К1 К2 К3 К4, 35 К1 К2)

ГОСТ 26020-83 (длина 6, 11,7, 12 метров)

  • маркировка Б – нормальные балки перекрытия (12 Б1, 14 Б1, 16Б1)

2. С уклоном внутренних граней полок:

ГОСТ 8239-89 (длина 9, 11,7 и 12 метров)

  • без буквы – обычные стальные балки перекрытия (10, 12, 14, 16, 18, 20, 30, 36, 45)

ГОСТ 19425-74 (длина 12 метров)

  • маркировка М – специальные стальные двутавры для подвесных путей (18М, 24М, 30М, 36М, 45М)
  • маркировка С – для армирования шахтных стволов (14С, 20С, 22С, 27С)

Для изготовления балок с параллельными гранями полок и с уклоном внутренних граней полок используют следующие марки стали: 3СП, 09Г2С.

Расчет стоимости 1 метра или штуки двутавра 25Б1

Рассчитать цену 1 метра или 1 хлыста стальной балки 25б1 вы можете при помощи нижеприведенных формул или позвонить по вышеуказанному телефону специалистам по продажам.

1.  Цена за 1 погонный метр стального двутавра 25Б1 рассчитывается по формуле:
     Цена 1 п.м (руб) = Вес 1 п.м (кг) х Цена 1 тн (руб/тн) : 1000 (кг)

Вопрос: Сколько стоит 1 п.м балки 25 Б1?
Ответ: Цена 1 п.м = 25,7 кг х 35 790 руб/тн : 1000 кг = 919,80 руб

2.  Цена 1 штуки двутавровой балки 25 б1 сталь 3 рассчитывается по формуле:
     Цена 1 шт (руб) = Цена 1 п.м (руб) х Длина 1 шт

Вопрос: Сколько стоит 1 балка 25Б1 длиной 12 м?
Ответ: Цена 1 шт = 919,8 руб х 12 м = 11 061,65 руб

Упаковка завода-производителя


Стальная или двутавровая балка поставляется с заводов-производителей на склады в Москву, МО и другие регионы РФ в пачках, которая скрепляется металлической лентой и средний вес одной пачки составляет 7-8 тонн.

Какие заводы производят

Основными заводами и предприятиями-изготовителями двутавровой балки являются:

  • Нижнетагильский металлургический комбинат (ОАО “Евраз НТМК”)
  • Западно-Сибирский металлургический комбинат (ОАО “ЗСМК”)
  • Кулебакский металлургический завод (ОАО “КМК”)
  • Металлургический комбинат “Азовсталь ( ОАО “МК “Азовсталь”)
  • Енакиевский металлургический завод (ОАО «Енакиевский МК»)

Стандартная норма загрузки в автотранспорт

Максимальная масса загрузки такого металлопроката, как стальная балка – составляет 25 тн.
Автотранспорт, в частности длинномер, позволяет перевозить эту продукцию – длиной до 12 м.

Норма загрузки стального балки в ж/д транспорт

В одном грузовом вагоне ж/д транспорта возможна перевозка двутавровой балки массой до 70 тн и длиной до12 м. Отгрузка вагонными нормами осуществляется напрямую с заводов-изготовителей или с металлобаз Москвы, Московской области и других регионов РФ, кроме того возможна комплектация стального двутавра различных характеристик.

Как называется балка на английском языке

I-beam

Вопросы и ответы | КаркасКомплект

Уважаемые пользователи, в данном разделе вы можете найти ответы на самые распространенные вопросы, связанные с деревянными двутавровыми балками.

 

Вопрос: Где используются деревянные двутавровые балки?

Ответ: Двутавровые балки могут использоваться в качестве перекрытий в зданиях различных строительных систем, а также в качестве стропил.

————————————————————————————————————————–

Вопрос: Что такое «связи»? Зачем они нужны?

Ответ: Связи нужны для соединения всех балок перекрытия между собой, это создает эффект монолита, благодаря которому увеличиваются прочностные характеристики перекрытия.

————————————————————————————————————————–

Вопрос: Чем отличаются балки с различной шириной полки?

Ответ: У балок с большей шириной полки несущая способность выше, что позволяет увеличивать шаг между балками с одинаковым пролетом.

————————————————————————————————————————–

Вопрос: Чем отличаются балки с различной высотой?

Ответ: С увеличением высоты балки, увеличивается ее несущая способность.

————————————————————————————————————————–

Вопрос: Какой клей вы используете? Прочный ли он?

Ответ: В качестве клеевой основы мы используем двухкомпонентный меламиновый клей, производитель компания AlzoNobel (Швеция). По результатам исследования, проведенным ЦНИИСК, клей является самым крепким компонентом конструкции.

————————————————————————————————————————–

Вопрос: Какая максимальная длина вашей балки?

Ответ: Мы производим балку до 12 метров включительно.

————————————————————————————————————————–

Вопрос: Чем отличается обычный деревянный брусок от бруска ЛВЛ ( прессованный клееный шпон) ?

Ответ: Несущая способность балки с использованием материала ЛВЛ почти в 1,7 раза больше чем у балки с использованием деревянного бруса.

————————————————————————————————————————–

Вопрос: Сколько балок можно поместить в одну фуру?

Ответ: Если взять, например, балку БДКУ 302 мм (6 метров), поместится примерно 24 пачки, получается около 720 балок.

————————————————————————————————————————–

Вопрос: Занимается ли ваша компания проектированием?

Ответ: Наша компания- «Каркас Комплект», занимается производством двутавровых балок, но у нас есть компания-партнер, занимающаяся проектированием и строительством, которая сможет подобрать вам проект и смонтировать перекрытие. Сайт компании «Новый дом»: www.tverskayacompany.ru.

————————————————————————————————————————–

Вопрос: Чем отличается деревянная двутавровая балка от других видов перекрытий?

Ответ: Сравнительный анализ различных видов перекрытий показывает, что наиболее эффективным является применение деревянной двутавровой балки нашего производства. Экономический эффект от применения деревянной двутавровой балки составляет от 30 до 400%, по сравнению с другими видами перекрытий. 

По желанию заказчика мы можем предоставить таблицу сравнительного анализа применения различных видов перекрытий в малоэтажном строительстве.

————————————————————————————————————————–

Вопрос: Где находится ваше производство?

Ответ: Производство находится в Московской области, Истринский район.

Калькулятор нагрузки на балку

Этот калькулятор нагрузки на балку поможет вам определить реакции на опоры балки с простой опорой из-за вертикальных точечных нагрузок или сил. С помощью этого калькулятора вы узнаете, что такое реакция опоры , и научитесь основам расчета несущей способности балки.

Знание того, как найти опорные реакции, – отличное место для начала при анализе балок, например, при определении отклонения балки. Продолжайте читать, чтобы узнать больше.

Что такое реакция поддержки?

Согласно третьему закону движения Ньютона , каждая сила, действующая на объект, имеет равную и противоположную реакцию. Если вы пытаетесь оттолкнуться от чего-то, скажем, стены, вам кажется, что стена тоже отталкивается от вас. Именно это и описывает третий закон движения Ньютона.

В машиностроении элементы конструкции, такие как балки и колонны, взаимодействуют друг с другом в точках, где они встречаются. Представьте себе балку, которая опирается на на месте двумя колоннами.Вес балки давит на колонны, и, благодаря третьему закону движения Ньютона, мы можем также сказать, что колонны оказывают на балку эквивалентную противоположную силу реакции. Мы называем эти силы реакции реакциями опоры .

На балке с простой опорой реакции опоры на каждом конце балки могут быть одинаковыми или иметь разные значения. Их значения зависят от приложенных нагрузок на балку. Если на более близком расстоянии к одной опоре находится больше нагрузок, эта опора испытывает большую силу и, следовательно, большую реакцию.

Как рассчитать опорные реакции в балке?

Поскольку опорные реакции действуют в направлении, противоположном силе, мы можем сказать, что вся система находится в равновесии. Это означает, что балка не движется, а сумма сил и моментов дает ноль. Приравнивая моментов от нагрузки к моментам из-за опорных реакций , мы можем затем определить реакции на опорах.

Так же, как при расчете крутящего момента, мы также можем выполнить суммирование моментов на каждой опоре, чтобы найти реакции.Ниже мы выражаем сумму, Σ , моментов на опоре A, чтобы найти реакцию на опоре B, обозначенную как R B , как показано ниже:

Σ (F * x) - (R B * диапазон) = 0

(F 1 * x 1 ) + (F 2 * x 2 ) + (F 3 * x 3 ) + ... + (F n * x n ) - (R B * пролет) = 0

где:

  • F , F 1 , F 2 , F 3 и F n – Точечные нагрузки на балку на расстояниях x , x 1 , x 2 x 3 и x n от опоры A соответственно;
  • R B – Реакция на опоре B; и
  • пролет – Длина балки между опорой A и опорой B.

Переставив уравнение, мы можем выделить R B следующим образом:

R B * диапазон = (F 1 * x 1 ) + (F 2 * x 2 ) + (F 3 * x 3 ) + ... + ( F n * x n )

R B = ((F 1 * x 1 ) + (F 2 * x 2 ) + (F 3 * x 3 ) +... + (F n * x n )) / пролет

Теперь, когда у нас есть выражение для нахождения R B , и поскольку мы знаем, что общие приложенные силы равны сумме реакций, теперь мы можем также найти реакцию на опоре A R A , используя следующие уравнения:

Σ (F) = Rᴀ + Rʙ

R A = Σ (F) - Rʙ

Пример расчета реакции опоры

Предположим, у нас есть 4.0-метровая балка с простой опорой длиной с приложенной точечной нагрузкой 10,0 килоньютон (кН) на расстоянии 2,0 метра от опоры A и прикладываемой другой точечной нагрузкой 3,5 кН на расстоянии 1,5 метра от опоры B , как показано ниже:

Для расчета R B сформулируем уравнение моментного равновесия следующим образом:

R B = (F 1 * x 1 + F 2 * x 2 ) / пролет

R B = (10 кН * 2.0 м + 3,5 кН * (4,0 м - 1,5 м)) / 4,0 м

R B = (20 кН-м + 3,5 кН * 2,5 м) / 4,0 м

R B = (20 кН-м + 8,75 кН-м) / 4,0 м

R B = 7,1875 кН

Суммируя силы, получаем:

Σ (F n ) = 0

Факс 1 + Факс 2 + (-Rᴀ) + (-Rʙ) = 0

10 кН + 3.5 кН + (-Rᴀ) + (-7,1875 кН) = 0

R A = 10 кН + 3,5 кН - 7,1875 кН

R A = 6,3125 кН

Обратите внимание, что для этого суммирования , мы рассмотрели все нисходящих сил как положительные и все восходящих сил как отрицательные . Основываясь на наших расчетах выше, мы теперь получили реакции на опорах A и B, которые составляют 6,3125 кН и 7,1875 кН , соответственно.

Также обратите внимание, что в этом примере и в калькуляторе нагрузки на балку мы предполагали, что балка невесомая. Однако, если указан вес балки, вы можете рассматривать ее как еще одну направленную вниз точечную нагрузку в центре или центроиде балки.

Использование нашего калькулятора нагрузки на балку

Наш калькулятор легок и прост в использовании. Все, что вам нужно сделать, это ввести пролет балки , величину точечных нагрузок и их расстояние от опоры A .Сначала вы увидите поля только для двух нагрузок (Нагрузка 1 и Нагрузка 2), но как только вы введете значение для x 2 , появятся поля для Нагрузки 3 и так далее.

Если вы хотите ввести восходящую нагрузку, просто введите отрицательное значение для величины нагрузки. Всего в наш калькулятор нагрузки на балку можно ввести до 11 точечных нагрузок.

Хотите узнать больше?

Теперь, когда вы узнали, как рассчитать допустимую нагрузку на балку, определив реакции на опорах, возможно, вы также захотите узнать больше о том, что такое прогиб балки и изгиб балки.

Калькулятор деревянных балок | Какой размер мне нужен?

Рассчитайте необходимый размер балки, балки или перекрытия из сосны № 2 или LVL. Охватывает любой пролет и любую нагрузку с высокой точностью. Дважды проверьте себя с этими графиками диапазона. Работает только с равномерно распределенными нагрузками.

Есть два разных типа нагрузок. Это либо внешняя, либо внутренняя нагрузка. Другими словами, он будет либо на внешней стене, либо где-то внутри.Нагрузка на внешнюю стену с чистыми пролетными фермами составляет ровно половину нагрузки на каждую стену. Например, если здание имеет размеры 24 x 24 и имеет фермы, а нагрузка на крышу будет составлять 30 фунтов снеговой нагрузки, а потолок без хранилища будет таким. Это будет вдвое больше нагрузки на внешние стены по сравнению со зданием с центральной стеной. Калькулятор учитывает все это. Вам нужно только выбрать все применяемые нагрузки.

Большинство внутренних балок должны учитывать нагрузку на крышу.Если есть какие-либо вопросы по другому поводу, вам следует обратиться к поставщику или инженеру. Этот калькулятор соответствует 90% приложений в Международной книге кодов жилищного строительства 2012 года.

Здравый смысл

По моему опыту никогда не использовать балку меньше двухслойной 2 x 8. Независимо от того, что сказано в технических характеристиках. Эти небольшие области обычно представляют собой дверные проемы во внутренней части, и людей учат, что эти области являются самым надежным местом в доме в случае возникновения чрезвычайной ситуации.

Подшипник

Согласно кодам IRC 2012 года любая балка, балка или свод никогда не должны иметь пеленг менее 1 1/2 дюйма. Что-нибудь 5 ‘и выше мы всегда как минимум вдвое калечим. На более длинных пролетах балке может потребоваться гораздо больше места для опоры, как указано в этой таблице.

Крепление

Балки, состоящие из более чем одного слоя, должны скрепляться вместе гвоздями или болтами. Код IRC 2012 года требует минимум 32 ″ O.C. в шахматном порядке с использованием гвоздя размером не менее 3 ″ на 120 ″.На собственном опыте мы научились использовать гвоздь с пазом размером не менее 3 1/4 дюйма x 131 дюйм в колонне по четыре на каждую ногу вниз по ламинату.

Единственный раз, когда вам когда-либо понадобится использовать болты, будет, если материал будет иметь такие серьезные деформации, как плохая «чашка», которую невозможно преодолеть гвоздями.

% PDF-1.5 % 1 0 obj> эндобдж 2 0 obj> эндобдж 3 0 obj> эндобдж 4 0 obj> / Метаданные 418 0 R / Контуры 419 0 R / Страницы 8 0 R / StructTreeRoot 284 0 R >> эндобдж 5 0 obj> эндобдж 6 0 obj> эндобдж 7 0 obj> эндобдж 8 0 obj> эндобдж 9 0 obj> эндобдж 10 0 obj> эндобдж 11 0 obj> эндобдж 12 0 объект> / MediaBox [0 0 481.92 708.6] / Parent 8 0 R / Resources> / Font> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] / Properties >>> / StructParents 0 / Tabs / S >> эндобдж 13 0 obj> эндобдж 14 0 obj> эндобдж 15 0 obj> эндобдж 16 0 obj> эндобдж 17 0 obj> эндобдж 18 0 obj> эндобдж 19 0 obj> эндобдж 20 0 obj> эндобдж 21 0 obj> эндобдж 22 0 obj> эндобдж 23 0 obj> эндобдж 24 0 obj> эндобдж 25 0 obj> эндобдж 26 0 obj> эндобдж 27 0 obj> эндобдж 28 0 obj> эндобдж 29 0 obj> эндобдж 30 0 obj> эндобдж 31 0 объект> эндобдж 32 0 obj> эндобдж 33 0 obj> эндобдж 34 0 obj> эндобдж 35 0 obj> эндобдж 36 0 obj> эндобдж 37 0 obj> эндобдж 38 0 obj> эндобдж 39 0 obj> эндобдж 40 0 obj> эндобдж 41 0 объект> эндобдж 42 0 obj> эндобдж 43 0 obj> эндобдж 44 0 obj> эндобдж 45 0 obj> эндобдж 46 0 obj> эндобдж 47 0 obj [51 0 R] эндобдж 48 0 obj> эндобдж 49 0 obj> эндобдж 50 0 obj> эндобдж 51 0 obj> эндобдж 52 0 obj> эндобдж 53 0 obj> эндобдж 54 0 obj> эндобдж 55 0 obj> эндобдж 56 0 obj> эндобдж 57 0 obj> эндобдж 58 0 obj> эндобдж 59 0 obj> эндобдж 60 0 obj> эндобдж 61 0 объект> эндобдж 62 0 obj> эндобдж 63 0 obj> эндобдж 64 0 obj> эндобдж 65 0 obj> эндобдж 66 0 obj> эндобдж 67 0 obj> эндобдж 68 0 obj> эндобдж 69 0 obj> эндобдж 70 0 obj> эндобдж 71 0 obj> / BS> / F 4 / Rect [144.31 45,3 241,33 58.635] / StructParent 7 / Подтип / Ссылка >> эндобдж 72 0 obj> эндобдж 73 0 obj> эндобдж 74 0 obj> эндобдж 75 0 obj> / MediaBox [0 0 481.92 708.6] / Parent 8 0 R / Resources> / Font> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] / Properties >>> / StructParents 1 / Tabs / S> > эндобдж 76 0 obj> эндобдж 77 0 obj> эндобдж 78 0 obj> эндобдж 79 0 obj> эндобдж 80 0 obj> эндобдж 81 0 объект> эндобдж 82 0 объект> эндобдж 83 0 obj> эндобдж 84 0 obj> эндобдж 85 0 obj> эндобдж 86 0 obj> эндобдж 87 0 obj> эндобдж 88 0 obj> эндобдж 89 0 obj [93 0 R] эндобдж 90 0 obj> эндобдж 91 0 объект> эндобдж 92 0 obj> эндобдж 93 0 obj> эндобдж 94 0 obj> эндобдж 95 0 obj> эндобдж 96 0 obj> эндобдж 97 0 obj> эндобдж 98 0 obj> эндобдж 99 0 obj> эндобдж 100 0 obj> эндобдж 101 0 obj> эндобдж 102 0 объект> эндобдж 103 0 obj> эндобдж 104 0 объект> эндобдж 105 0 obj [278 0 0 0 0 0 0 0 0 0 0 0 0 333 278 0 0 556 556 556 556 556 0 0 0 0 0 0 0 0 0 0 0 722 0 722 0 0 0 0 0 278 0 0 611 833 0 0 0 0 722 0 0 0 667 0 0 0 0 0 0 0 0 0 0 556 611 556 611 556 333 611 611 278 0 0 278 889 611 611 611 0 389 556 333 611 0 0 0 556] эндобдж 106 0 obj> эндобдж 107 0 obj> эндобдж 108 0 obj [112 0 R] эндобдж 109 0 obj> транслировать x] Mk 9n1nJ! ~ дCThT9w4 [뼏 o ڇ ֚ 58 aXpqkPN2! @ * j = wqnX] {a% hNph: h # LJ8CO gc) ov $ y2k F9NBBH! Z / _0> $ I, D% jJRty ٳ Kɪ \ K QtY знак равно ښ ZC $ s; c: l | ́ конечный поток эндобдж 110 0 obj> эндобдж 111 0 obj> эндобдж 112 0 obj> эндобдж 113 0 объект> транслировать x} `ES = w & 3 $

Bentley – Документация по продукту

MicroStation

Справка MicroStation

Ознакомительные сведения о MicroStation

Справка MicroStation PowerDraft

Ознакомительные сведения о MicroStation PowerDraft

Краткое руководство по началу работы с MicroStation

Справка по синхронизатору iTwin

ProjectWise

Справка службы автоматизации Bentley

Ознакомительные сведения об услуге Bentley Automation

Сервер композиции Bentley i-model для PDF

Подключаемый модуль службы разметки

PDF для ProjectWise Explorer

Справка администратора ProjectWise

Справка службы загрузки данных ProjectWise Analytics

Коннектор ProjectWise для ArcGIS – Справка по расширению администратора

Коннектор ProjectWise для ArcGIS – Справка по расширению Explorer

Коннектор ProjectWise для ArcGIS Справка

Коннектор ProjectWise для Oracle – Справка по расширению администратора

Коннектор ProjectWise для Oracle – Справка по расширению Explorer

Коннектор ProjectWise для справки Oracle

Коннектор управления результатами ProjectWise для ProjectWise

Справка портала управления результатами ProjectWise

Ознакомительные сведения по управлению поставками ProjectWise

Справка ProjectWise Explorer

Справка по управлению полевыми данными ProjectWise

Справка администратора геопространственного управления ProjectWise

Справка ProjectWise Geospatial Management Explorer

Ознакомительные сведения об управлении геопространственными данными ProjectWise

Модуль интеграции ProjectWise для Revit Readme

Руководство по настройке управляемой конфигурации ProjectWise

Справка по ProjectWise Project Insights

ProjectWise Plug-in для Bentley Web Services Gateway Readme

ProjectWise ReadMe

Матрица поддержки версий ProjectWise

Веб-справка ProjectWise

Справка по ProjectWise Web View

Справка портала цепочки поставок

Управление эффективностью активов

Справка по AssetWise 4D Analytics

Справочная служба AssetWise ALIM Linear Referencing Services

AssetWise ALIM Web Help

Руководство по внедрению AssetWise ALIM в Интернете

AssetWise ALIM Web Краткое руководство, сравнительное руководство

Справка по AssetWise CONNECT Edition

AssetWise CONNECT Edition Руководство по внедрению

Справка по AssetWise Director

Руководство по внедрению AssetWise

Справка консоли управления системой AssetWise

Руководство администратора мобильной связи TMA

Мобильная справка TMA

Анализ моста

Справка по OpenBridge Designer

Справка по OpenBridge Modeler

Строительный проект

Справка проектировщика зданий AECOsim

Ознакомительные сведения AECOsim Building Designer

AECOsim Building Designer SDK Readme

Генеративные компоненты для справки проектировщика зданий

Ознакомительные сведения о компонентах генерации

Справка по OpenBuildings Designer

Ознакомительные сведения о конструкторе OpenBuildings

Руководство по настройке OpenBuildings Designer

OpenBuildings Designer SDK Readme

Справка по генеративным компонентам OpenBuildings

Ознакомительные сведения по генеративным компонентам OpenBuildings

Справка OpenBuildings Speedikon

Ознакомительные сведения OpenBuildings Speedikon

OpenBuildings StationDesigner Help

OpenBuildings StationDesigner Readme

Гражданское проектирование

Помощь в канализации и коммунальных услугах

Справка OpenRail ConceptStation

Ознакомительные сведения по OpenRail ConceptStation

Справка по OpenRail Designer

Ознакомительные сведения по OpenRail Designer

Справка по конструктору надземных линий OpenRail

Справка OpenRoads ConceptStation

Ознакомительные сведения по OpenRoads ConceptStation

Справка по OpenRoads Designer

Ознакомительные сведения по OpenRoads Designer

Справка по OpenSite Designer

Файл ReadMe для OpenSite Designer

Строительство

ConstructSim Справка для руководителей

ConstructSim Исполнительное ReadMe

ConstructSim Справка издателя i-model

Справка по планировщику ConstructSim

ConstructSim Planner ReadMe

Справка стандартного шаблона ConstructSim

ConstructSim Work Package Server Client Руководство по установке

Справка по серверу рабочих пакетов ConstructSim

Руководство по установке сервера рабочих пакетов ConstructSim

Справка управления SYNCHRO

SYNCHRO Pro Readme

Энергия

Справка по Bentley Coax

Справка по PowerView по Bentley Communications

Ознакомительные сведения о Bentley Communications PowerView

Справка по Bentley Copper

Справка по Bentley Fiber

Bentley Inside Plant Help

Справка конструктора Bentley OpenUtilities

Ознакомительные сведения о Bentley OpenUtilities Designer

Справка по подстанции Bentley

Ознакомительные сведения о подстанции Bentley

Справка конструктора OpenComms

Ознакомительные сведения о конструкторе OpenComms

Справка OpenComms PowerView

Ознакомительные сведения OpenComms PowerView

Справка инженера OpenComms Workprint

OpenComms Workprint Engineer Readme

Справка подстанции OpenUtilities

Ознакомительные сведения о подстанции OpenUtilities

PlantSight AVEVA Diagrams Bridge Help

PlantSight AVEVA PID Bridge Help

Справка по экстрактору мостов PlantSight E3D

Справка по PlantSight Enterprise

Справка по PlantSight Essentials

PlantSight Открыть 3D-модель Справка по мосту

Справка по PlantSight Smart 3D Bridge Extractor

Справка по PlantSight SPPID Bridge

Promis.e Справка

Promis.e Readme

Руководство по установке Promis.e – управляемая конфигурация ProjectWise

Руководство пользователя sisNET

Руководство по настройке подстанции

– управляемая конфигурация ProjectWise

Инженерное сотрудничество

Справка рабочего стола Bentley Navigator

Геотехнический анализ

PLAXIS LE Readme

Ознакомительные сведения о PLAXIS 2D

Ознакомительные сведения о программе просмотра вывода PLAXIS 2D

Ознакомительные сведения о PLAXIS 3D

Ознакомительные сведения о программе просмотра 3D-вывода PLAXIS

PLAXIS Monopile Designer Readme

Управление геотехнической информацией

Справка администратора gINT

Справка gINT Civil Tools Pro

Справка gINT Civil Tools Pro Plus

Справка коллекционера gINT

Справка по OpenGround Cloud

Гидравлика и гидрология

Справка Bentley CivilStorm

Справка Bentley HAMMER

Справка Bentley SewerCAD

Справка Bentley SewerGEMS

Справка Bentley StormCAD

Справка Bentley WaterCAD

Справка Bentley WaterGEMS

Проектирование шахты

Помощь по транспортировке материалов MineCycle

Ознакомительные сведения по транспортировке материалов MineCycle

Моделирование мобильности

LEGION 3D Руководство пользователя

LEGION CAD Prep Help

Справка по построителю моделей LEGION

Справка по API симулятора LEGION

Ознакомительные сведения об API симулятора LEGION

Справка по симулятору LEGION

Моделирование

Bentley Посмотреть справку

Ознакомительные сведения о Bentley View

Морской структурный анализ

SACS Close the Collaboration Gap (электронная книга)

Ознакомительные сведения о SACS

Анализ напряжений в трубах и сосудов

AutoPIPE Accelerated Pipe Design (электронная книга)

Советы новым пользователям AutoPIPE

Краткое руководство по AutoPIPE

AutoPIPE & STAAD.Pro

Завод Дизайн

Ознакомительные сведения об экспортере завода Bentley

Bentley Raceway and Cable Management Help

Bentley Raceway and Cable Management Readme

Bentley Raceway and Cable Management – Руководство по настройке управляемой конфигурации ProjectWise

Справка по OpenPlant Isometrics Manager

Ознакомительные сведения о диспетчере изометрических данных OpenPlant

Справка OpenPlant Modeler

Ознакомительные сведения для OpenPlant Modeler

Справка по OpenPlant Orthographics Manager

Ознакомительные сведения для менеджера орфографии OpenPlant

Справка OpenPlant PID

Ознакомительные сведения о PID OpenPlant

Справка администратора проекта OpenPlant

Ознакомительные сведения для администратора проекта OpenPlant

Техническая поддержка OpenPlant Support

Ознакомительные сведения о технической поддержке OpenPlant

Справка PlantWise

Ознакомительные сведения о PlantWise

Реальность и пространственное моделирование

Справка по карте Bentley

Справка по мобильной публикации Bentley Map

Ознакомительные сведения о карте Bentley

Справка консоли облачной обработки ContextCapture

Справка редактора ContextCapture

Файл ознакомительных сведений для редактора ContextCapture

Мобильная справка ContextCapture

Руководство пользователя ContextCapture

Справка Декарта

Ознакомительные сведения о Декарте

Справка карты OpenCities

Ознакомительные сведения о карте OpenCities

OpenCities Map Ultimate для Финляндии Справка

OpenCities Map Ultimate для Финляндии Readme

Структурный анализ

Справка OpenTower iQ

Справка по концепции RAM

Справка по структурной системе ОЗУ

STAAD Close the Collaboration Gap (электронная книга)

STAAD.Pro Help

Ознакомительные сведения о STAAD.Pro

STAAD.Pro Physical Modeler

Расширенная справка по STAAD Foundation

Дополнительные сведения о STAAD Foundation

Детализация конструкций

Справка ProStructures

Ознакомительные сведения о ProStructures

ProStructures CONNECT Edition Руководство по внедрению конфигурации

ProStructures CONNECT Edition Руководство по установке – Управляемая конфигурация ProjectWise

Расчет нагрузок на коллекторы и балки – Строительная техника

Обратите внимание: Эта старая статья нашего бывшего преподавателя остается доступной на нашем сайте в архивных целях.Некоторая информация, содержащаяся в нем, может быть устаревшей.

Понимание того, как нагрузки передаются через конструкцию и действуют на элементы конструкции, является первым шагом к определению размеров коллекторов и балок

Пол Физетт – © 2005

Большинство строителей автоматически выбирают двойные заголовки -2 x 8 или -2 x 10 для обрамления окон и дверей в каждом доме, который они строят. Эти коллекторы работают для поддержки большинства жилых помещений и по совпадению удерживают верхние части окон на одинаковой высоте.Красивое решение, но эффективно ли это и экономически выгодно использование материала? То же самое верно и для балок, таких как конструкционные коньковые балки и центральные балки. Слишком часто строители собирают брус размером 2 дюйма, чтобы выдержать нагрузки на крышу и пол, не рассматривая другие варианты. Вы не сможете превзойти пиломатериалы для большинства небольших оконных коллекторов, но по мере увеличения пролетов и нагрузок более прочные материалы становятся лучшим выбором. Пиломатериалы ограничивают возможности дизайна и в некоторых случаях просто не работают. Parallam, Timberstrand, клееный брус и Anthony Power Beam – примеры альтернативных материалов, которые предоставляют строителям захватывающий выбор.

В этой серии из двух частей мы рассмотрим, как пиломатериалы и эти инженерные материалы подходят для использования в качестве коллекторов и балок. Часть I покажет вам, как отследить структурные нагрузки до коллекторов и балок. В части II будут рассмотрены процедуры определения размеров, характеристики и стоимость этих материалов для нескольких приложений (см. «Определение размеров проектируемых балок и коллекторов» для части 2).

Делаю работу

Работа коллекторов и балок проста. Они передают нагрузки сверху на фундамент снизу через сеть конструктивных элементов.Идея определения размеров коллекторов и балок проста: сложите все временные и статические нагрузки, действующие на элемент, а затем выберите материал, который будет выдерживать нагрузку. Балка должна быть достаточно прочной, чтобы не ломаться (значение Fb), и достаточно жесткой, чтобы она не прогибалась чрезмерно под нагрузкой (значение E). Однако процесс определения размеров этих структурных элементов может быть сложным, если вы не инженер. Вот упрощенный подход, который поможет вам указать подходящий материал для многих приложений.

Первый шаг такой же для пиломатериалов и конструкционных древесных материалов: сложите все нагрузки, действующие на жатку или балку, а затем преобразуйте эту нагрузку в значение , какую нагрузку будет ощущать каждая прямая опора жатки или балки . Говоря лучевым языком, вы говорите: этот заголовок должен нести X-фунтов на линейный фут. Этот перевод является ключом к любой проблеме определения размеров конструкции. Вооружившись этой информацией, вы можете определить минимальный размер, пролет или силу балки (кредит джулио). Размеры инженерных деревянных компонентов определяются с помощью таблиц пролетов, которые соответствуют различным пролетам и фунтам на фут балки.Для пиломатериалов необходимо произвести математические расчеты.

Нагрузки считаются либо распределенными , либо точками нагрузками. Слой песка, равномерно распределенный по поверхности, является примером чистой распределенной нагрузки. Каждый квадратный фут поверхности испытывает одинаковую нагрузку. Текущие и статические нагрузки, указанные в строительных нормах и правилах для крыш и полов, являются приблизительными значениями распределенных нагрузок. Точечные нагрузки возникают, когда груз накладывается на одно место в конструкции, например на колонну.Нагрузка на опорную конструкцию распределяется неравномерно. Анализ точечной нагрузки лучше оставить инженерам. Мы будем рассматривать только распределенные нагрузки. Это позволит нам определять размеры балок для наиболее распространенных приложений.


Рисунок 1

Давайте проследим распределенные нагрузки для нескольких разных домов. Предположим, что все они расположены в одном климате, но имеют разные пути загрузки из-за конструкции. Эти примеры показывают, как распределенные нагрузки распределяются между элементами конструкции.Наши образцы домов находятся в районе, где снеговая нагрузка составляет 50 фунтов на квадратный фут площади крыши (снег рассматривается как временная нагрузка). Само собой разумеется, что в более теплом климате снеговая нагрузка, вероятно, была бы меньше, поэтому вам необходимо проверить свою кодовую книгу на предмет временных и статических нагрузок в вашем регионе. Все нагрузки указаны в фунтах на квадратный фут горизонтальной проекции (площадь пятна контакта). (СМ. РИСУНОК 1)

Заголовки


Рисунок 2

Пример заголовка № 1

Здесь каждый квадратный фут кровельной системы обеспечивает 50 фунтов действующей нагрузки и 15 фунтов статической нагрузки (всего 65 фунтов на квадратный фут) на систему несущей конструкции.Помните, что эти нагрузки равномерно распределяются по всей поверхности крыши. Наружная стена (и коллекторы внутри) будут нести все нагрузки от средней точки дома (между опорными стенами) к внешней стороне дома (включая свес крыши). Расстояние в этом случае составляет 12 футов + 2 фута = 14 футов. Таким образом, каждый линейный фут стены должен выдерживать нагрузки, создаваемые полосой шириной 1 фут в этом районе 14 футов. С технической точки зрения стена имеет ширину притока 14 футов. Отсюда мы легко можем видеть, что каждая прямая опора стены поддерживает:

Условия:

живая нагрузка (снег):

50 фунтов на квадратный фут x 14 футов = 700 фунтов на линейный фут

Собственная нагрузка на крышу:

15 фунтов на квадратный фут x 14 футов = 210 фунтов на линейный фут

общая нагрузка:

= 910 фунтов на линейный фут

Важно перечислить временную нагрузку, постоянную нагрузку и общую нагрузку отдельно, поскольку временная нагрузка используется для расчета жесткости, а общая нагрузка используется для расчета прочности.


Рисунок 3

Пример заголовка 2

Этот дом идентичен нашему первому примеру, за исключением того, что он построен из палки. В результате временная нагрузка, статическая нагрузка и распределение сил различны. В отличие от стропильной крыши, временная нагрузка и собственная нагрузка на стропила и балки перекрытия должны учитываться как отдельные системы. Поскольку чердак можно использовать для хранения, временная нагрузка на чердак в соответствии с нормами составляет 20 фунтов на квадратный фут.

Условия:

живая нагрузка (снег):

50 фунтов на квадратный фут x 14 футов = 700 фунтов на линейный фут

Собственная нагрузка на крышу:

10 фунтов на квадратный фут x 14 футов = 140 фунтов на линейный фут

перегрузка потолка:

20 фунтов на квадратный фут x 6 футов = 120 фунтов на линейный фут

статическая нагрузка потолка:

10 фунтов на квадратный фут x 6 футов = 60 фунтов на линейный фут

общая нагрузка:

= 1020 фунтов на линейный фут


Рисунок 4

Пример заголовка 3

Опять же, у этого дома такая же ширина, но у него 2 уровня.Нагрузки на нижний коллектор создают крыша, верхние стены и система 2-го этажа. В Стандартах архитектурной графики вес внешней стены размером 2 × 6 составляет 16 фунтов на фут 2 . Таким образом, стена высотой 8 футов весит 8 футов x 16 фунтов / фут 2 = 128 фунтов на линейный фут. На жатку доставлено:

Условия:

живая нагрузка (снег):

50 фунтов на квадратный фут x 14 футов = 700 фунтов на линейный фут

Собственная нагрузка на крышу:

15 фунтов на квадратный фут x 14 футов = 210 фунтов на линейный фут

стена верхнего уровня:

= 128 фунтов на линейный фут

Живая нагрузка 2-го этажа:

30 фунтов на фут x 6 футов = 180 фунтов на линейный фут

Собственная нагрузка 2-го этажа:

10 фунтов на квадратный фут x 6 футов = 60 фунтов на линейный фут

общая нагрузка:

= 1278 фунтов на линейный фут

Балки

Пример коньковой балки


Рисунок 5 – На этом рисунке показаны 2 конструктивных элемента: несущая балка конька и центральная балка.У обоих есть приток площадью 12’0 ″. Нагрузка на фут балки определяется так же, как и для жаток.

Условия коньковой балки

живая нагрузка (снег):

50 фунтов на фут x 12 футов = 600 фунтов на линейный фут

Собственная нагрузка на крышу:

10 фунтов на квадратный фут x 12 футов = 120 фунтов на линейный фут

общая нагрузка:

= 720 фунтов на линейный фут

Пример фермы

Центральная балка несет половину нагрузки на пол, нагрузку на перегородку и половину нагрузки на второй этаж.Текущие и статические нагрузки указаны в строительных нормах и правилах. Вес перегородки указан в Стандартах архитектурной графики как 10 фунтов на квадратный фут.

B) Состояние балок первого этажа

Живая нагрузка 1-го этажа:

40 фунтов на фут x 12 футов = 480 фунтов на линейный фут

Статическая нагрузка 1-го этажа:

10 фунтов на квадратный фут x 12 футов = 120 фунтов на линейный фут

Перегородка высотой 8 футов:

= 80 фунтов на линейный фут

Живая нагрузка 2-го этажа:

30 фунтов на фут x 12 футов = 360 фунтов на линейный фут

Собственная нагрузка 2-го этажа:

10 фунтов на фут x 12 футов = 120 фунтов на линейный фут

общая нагрузка:

= 1160 фунтов на линейный фут

Резюме

Эти примеры являются типичными для типов вычислений, которые вам необходимо выполнить для определения равномерной нагрузки, которая распределяется на балку или коллектор.Вы должны установить, какую нагрузку принимает каждая прямая опора жатки или балки. Следующим шагом будет использование технической литературы любой из компаний, производящих деревянные компоненты, для определения пролета и размера балки. Все они соотносят допустимые пролеты с нагрузкой на фут балки. Списки пролетов основаны на допустимом прогибе, динамической нагрузке и статической нагрузке, которые перечислены в вашей книге строительных норм. В части 2 «Определение размеров инженерных коллекторов и балок» мы сравниваем стоимость и характеристики некоторых деревянных изделий с пиломатериалами.

Все иллюстрации любезно предоставлены Journal of Light Construction.

Необходимо рассчитать несущую способность стальной балки при ремонте жилого дома.

 Здравствуйте, cpopetz, похоже, вы очень хорошо описали
твоя проблема. Думаю, мы сможем получить ответы.

(а) нагрузка, которую несет балка
один этаж

ПРИМЕЧАНИЕ. У вас есть сплошная балка с двумя равными пролетами.
Однако, чтобы упростить задачу, мы можем рассматривать его как простой
луч.4. Я бы сказал, что имеющаяся у вас балка адекватна. я
иметь программу балки, которая будет обрабатывать фактические конечные условия, которые
у вас есть. Я проверю луч с помощью этой программы и позволю вам
знаю, какие результаты я получаю. Если есть что-то из того, что я опубликовал,
вы не понимаете, пожалуйста, попросите разъяснений.

Скоро вернусь к вам, Redhoss 

Запрос на разъяснение ответа со стороны cpopetz-ga на 18 июля 2006 г., 12:48 PDT
 Большое спасибо! Для меня все это имеет смысл.Инспектор заботится и о самой колонне. (Он не
еще видел, он идет по моим описаниям.)

На самом деле столбцов две, хотя они расположены так близко
вместе, что, как я предполагал, один использовался для установки другого, или
тот был установлен за другим по какой-то причине (хотя, поскольку
стальная балка вряд ли прогнется, я не могу вообразить причину.)

Тем не менее, колонна высотой 12 футов выглядит как литая бетонная опора диаметром 6 дюймов.
восьмиугольный, с двумя вертикальными частями арматуры, идущими в нем.Это на
Квадратная площадка 24 дюйма, но я не знаю, насколько глубока. Колонна на расстоянии 1 фута
от него - телескопическая стальная колонна на другой квадратной площадке 24 дюйма.

Обе колонны в хорошем состоянии, ржавчины на стали нет.
растрескивание / рассыпание бетона.

Есть мысли по этому поводу? Я понимаю, что это гораздо более расплывчато, чем
предыдущий вопрос. 

Местная несущая способность стальных балок с гофрированными стенками

  • Аббас, Х. Х., Саус, Р., и Драйвер, Р. Г. (2007). Упрощенный анализ поперечного изгиба полки двутавровых балок из гофрированного картона под действием момента и сдвига в плоскости. Инженерные сооружения, 29, 2816–2824.

    Артикул Google ученый

  • Исли, Дж. Т. (1975). Формулы продольного изгиба для гофрированных металлических мембран, работающих на сдвиг. Журнал структурного подразделения, ASCE, 101 (7), 1403–1417.

    Google ученый

  • Эльгаалы, М., & Сешадри, А. (1997). Балки с рифлеными стенками при частичной сжимающей краевой нагрузке. Журнал структурной инженерии ASCE, 123 (6), 783–791.

    Артикул Google ученый

  • GB50017. (2003). Кодекс проектирования стальных конструкций. China Planning Press (на китайском языке) .

  • Кучта, К. Р. (2007). Дизайн гофрированного полотна под патч-нагрузкой. Усовершенствованная стальная конструкция, 3 (4), 737–751.

    Google ученый

  • Лейва-Аравена, Л., и Эдлунд, Б. (1987). Устойчивость к стенкам с трапециевидным рифлением. На коллоквиуме ECCS по устойчивости плит и гильз . Бельгия: Гентский университет.

  • Ли, Г. К., Ло, X. Ф., Сан, Ф. Ф., и Фан, X. (2012). Экспериментальное исследование усталостных характеристик сварной двутавровой балки с гофрированными стенками. Журнал строительных конструкций, 33 (1), 96–103. (на китайском языке) .

    Google ученый

  • Ли, Г.К., Чжан, З., и Сунь, Ф.Ф. (2009). Прочность на сдвиг двутавровой балки с гофрированными стенками. Журнал Университета Тунцзи (естественные науки), 37, 709–714. (на китайском языке) .

    Google ученый

  • Луо, Р., & Эдлунд, Б. (1996). Максимальная прочность балок с гофрированными стенками трапециевидной формы при патч-нагружении. Тонкостенные конструкции, 24, 135–156.

    Артикул Google ученый

  • Мун, Дж., Йи, Дж. У., Чой, Б. Х., и Ли, Х. Э. (2009). Продольный изгиб двутавра с гофрированными стенками при равномерном изгибе. Тонкостенные конструкции, 47, 21–30.

    Артикул Google ученый

  • Не, Дж. Г., Чжу, Л., Тао, М. Х., и Тан, Л. (2013). Прочность на сдвиг трапециевидных гофрированных стальных полотен. Журнал исследований конструкционной стали, 85, 105–115. (на китайском языке) .

    Артикул Google ученый

  • Qv, E. R., Ren, G. H., & Pan, L. (2005).Расчет несущей способности и расчет балок с гофрированными стальными стенками. Журнал Технологического университета Хэфэй, 28 (4), 417–420. (на китайском языке) .

    Google ученый

  • Саузе Р. и Бракстан Т. (2011). Прочность на сдвиг трапециевидных гофрированных стальных полотен. Журнал исследований конструкционной стали, 67, 223–236.

    Артикул Google ученый

  • Смит Д. (1992). Поведение гофрированных пластин при сдвиге. Кандидат наук. Диссертация, Университет штата Мэн.

  • Сонг, Дж. Й., Рен, Х. У. и Ни, Дж. Г. (2005). Анализ продольного изгиба при нелинейном сдвиге гофрированных стальных стенок. Журнал исследований и разработок автомобильных дорог и транспорта, 22 (11), 89–92. (на китайском языке) .

    Google ученый

  • Йи, Дж., Гил, Х., Йом, К., и Ли, Х. (2008). Интерактивное продольное изгибание гофрированных полотен трапециевидной формы. Инженерные сооружения, 30, 1659–1666.

    Артикул Google ученый

  • Zhang, Z.

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *