Система возбуждения тиристорная: виды, схемы, достоинства и недостатки

alexxlab | 19.09.2019 | 0 | Разное

Содержание

виды, схемы, достоинства и недостатки

Системы возбуждения синхронных генераторовВсе турбогенераторы, гидрогенераторы, дизель-генераторы, синхронные компенсаторы и двигатели, изготавливаемые в настоящее время, оснащаются современными полупроводниковыми системами возбуждения – рис.5.2 – 5.7. В этих системах используется принцип выпрямления трехфазного переменного тока повышенной или промышленной частоты возбудителей или напряжения возбуждаемой машины.

Электромашинные системы возбуждения (рис.5.1), выпускавшиеся заводами более 30 лет назад и находящиеся до сих пор в эксплуатации, могут быть заменены на современные полупроводниковые статические системы с любым набором заданных функций.

Системы возбуждения обеспечивают следующие режимы работы синхронных машин:

  1. начальное возбуждение;
  2.  холостой ход;
  3. включение в сеть методом точной синхронизации или самосинхронизации;
  4. работу в энергосистеме с допустимыми нагрузками и перегрузками;
  5. форсировку возбуждения по напряжению и по току с заданной кратностью;
  6. разгрузку по реактивной мощности и развозбуждение при нарушениях в энергосистемах;
  7. гашение поля генератора в аварийных режимах и при нормальной остановке;
  8. электрическое торможение агрегата.

Система независимого возбуждения с возбудителем постоянного тока

Рис.5.1. Система независимого возбуждения с возбудителем постоянного тока.
КК – контактные кольца, Rсс и КСС – сопротивление и контактор самосинхронизации, РВ – резервный возбудитель, АГП – автомат гашения поля, АГПВ – автомат гашения поля возбудителя, Rр – регулировочный реостат, Rд и Rгасв – резисторы добавочный и гасительный в цепи ОВВ, ДОВВ – добавочная обмотка возбуждения возбудителя.

Для оснащения турбо- и гидрогенераторов выпускается три типа систем возбуждения:
• системы тиристорные независимые (СТН) – рис.5.2;
• системы тиристорные самовозбуждения (СТС) – рис.5.3;
• системы бесщеточные диодные (СБД) – рис.5.4


Системы тиристорного независимого возбуждения (СТН)

Системы тиристорные независимые (СТН) предназначены для питания обмотки возбуждения крупных турбо- и гидрогенераторов выпрямленным регулируемым током, применяемые при выработке электроэнергии на ГЭС и других генерирующих станциях – рис.5.2.

В отличие от систем самовозбуждения (СТС), в СТН тиристорные выпрямители главного генератора получают питание от независимого источника напряжения переменного тока промышленной частоты – от вспомогательного синхронного генератора, вращающемся на одном валу с главным генератором.

Система тиристорная независимая (СТН)

Рис.5.2. Система тиристорная независимая (СТН) с возбудителем переменного тока и двумя группами тиристоров, в сочетании со схемой резервного возбуждения от двухмашинного агрегата асинхронный двигатель-возбудитель постоянного тока. В – возбудитель (вспомогательный генератор) переменного тока, ОВВ обмотка возбуждения возбудителя, ВРГ, ВФГ – тиристорные вентили рабочей и форсировочной групп, ВВВ – тиристорные вентили выпрямителя возбудителя, СУВРГ, СУВФГ, СУВВВ – системы управления вентилями соответствующих групп, ВТВ – выпрямительный трансформатор возбудителя, ТСНВ – трансформатор СН тиристорных выпрямителей.

Вспомогательный генератор переменного тока возбуждения построен по схеме самовозбуждения. СТН обладает важным преимуществом – её параметры не зависят от процессов, протекающих в энергосистеме.

Благодаря наличию вспомогательного генератора, сохраняется независимость возбуждения от длительности и удаленности КЗ и других возмущений в энергосистеме, и высокая скорость нарастания напряжения возбуждения: не более 25 мс до достижения максимального значения при уменьшении напряжения прямой последовательности в точке регулирования на 5%.

В системе СТН обеспечивается быстрое снятие возбуждения за счет изменения полярности напряжения возбуждения: время развозбуждения от максимального положительного до отрицательного минимального напряжения возбуждения не превышает 100 мс.

Система тиристорного самовозбуждения (СТС)


Рис.5.3. Система тиристорного самовозбуждения (СТС) с выпрямительным трансформатором (ВТ) и двумя группами тиристоров. ТСНР, ТСНФ – трансформаторы СН тиристорных выпрямителей рабочей и форсировочной групп.

В системе СТН выпрямленное номинальное напряжение может составлять 700 В, а выпрямленный номинальный ток – до 5500А. Кратности форсировки по напряжению и току составляют не менее двух единиц, а длительность форсировки – от 20 до 50 с. Точность поддержания напряжения генератора – не хуже ±0,5% и до ±1%. Система охлаждения тиристорного выпрямителя в системах СТН и СТС может быть принудительно воздушной, естественной воздушной или водяной.


Система тиристорного самовозбуждения (СТС)

Система тиристорного самовозбуждения (СТС) предназначена для питания обмоток возбуждения турбо и гидрогенераторов выпрямленным регулируемым током – рис.5.3.
Питание тиристорного выпрямителя осуществляется через трансформатор, подключенный к генераторному токопроводу. Для запуска генератора предусмотрена цепь начального возбуждения, которая автоматически формирует кратковременный импульс напряжения на обмотке ротора до появления ЭДС обмотки статора генератора. Импульс напряжения достаточен для поддержания устойчивой работы тиристорного преобразователя в цепи самовозбуждения. Питание цепей начального возбуждения осуществляется как от источника переменного тока, так и от станционной аккумуляторной батареи.

В системе СТС выпрямленное номинальное напряжение составляет до 500 В, а выпрямленный номинальный ток – не более 4000 А, т.е. эти значения несколько ниже, чем в системах СТН.

Благодаря высокому быстродействию управляемого выпрямителя и предельным уровням напряжения и тока возбуждения в сочетании с эффективными законами управления система СТС обеспечивает высокое качество регулирования и большие запасоустойчивости энергосистем. По этим показателям система СТС соответствует значениям системы СТН.

В системе СТН интенсивное гашение поля генераторов в нормальных условиях эксплуатации достигается за счет перевода тиристорного преобразователя в инверторный режим изменением полярности напряжения возбуждения – время развозбуждения не превышает 100 мс.

Экстренное снятие возбуждения в аварийных режимах обеспечивается автоматом гашения поля – электрическим аппаратом специальной конструкции, который при срабатывании производит оптимальное гашение поля генератора (АГП).

Система бесщеточная диодная (СБД)

Рис.5.4. Система бесщеточная диодная (СБД) независимого возбуждения: а – с подвозбудителем (ПВ), б – без подвозбудителя, с питанием обмотки возбуждения возбудителя (ОВВ) от выпрямительного трансформатора (ВТ). ДВ – вращающиеся диодные вентили.

Действие АГП заключается в уменьшении времени гашения поля при соблюдении предельно допустимой по условиям электрической прочности изоляции величины напряжения на обмотке возбуждения. Защита ротора от перенапряжений выполняется на основе быстродействующих тиристорных разрядников.

Учитывая высокую надежность тиристорных выпрямителей и улучшение их параметров по токам и напряжениям, в схемах возбуждения могут применяться вместо двух групп вентилей (ВРГ, ВФГ) одну группу с необходимой кратностью форсировки – рис.5.5.


Система тиристорного самовозбуждения резервная (СТСР)

В схемах рис.5.1, 5.2, 5.3 благодаря наличию контактных колец на роторе можно использовать систему резервного возбуждения. В прежних системах использовался двухмашинный агрегат из асинхронного двигателя, соединенного с генератором постоянного тока. Асинхронный двигатель получал питание от шин собственных нужд и был общим для нескольких генераторов.

В современной системе тиристорного самовозбуждения резервной (СТСР) использован принцип тиристорного выпрямления от разделительного трансформатора, также присоединенного к системе собственных нужд станции.

Назначение этих систем – питание обмотки ротора синхронной машины в случаях, когда основная система вследствие неисправности или технического обслуживания выведена из работы. На электростанциях устанавливают одну резервную систему на группу генераторов. На многих станциях продолжают использовать двухмашинные агрегаты, питаемые от шин собственных нужд. Более совершенной является статическая система СТСР, представляющая собой мощный регулируемый источник постоянного тока. Система оснащена всеми необходимыми средствами защиты, управления и коммутации.


Системы бесщеточные диодные (СБД)

Системы бесщеточные диодные (СБД) предназначены для питания обмотки возбуждения турбогенераторов выпрямленным регулируемым током – рис.5.4а,б.

Бесщеточный возбудитель представляет собой синхронный генератор обращенного исполнения, якорь которого с обмоткой переменного тока и диодным выпрямителем жестко соединен с ротором возбужденного турбогенератора. Обмотка возбуждения возбудителя расположена на его статоре.

Главное достоинство бесщеточных возбудителей состоит в отсутствии контактных колец и щеточного контакта в цепи обмотки ротора турбогенератора и в сокращении длины машины.

Это позволяет обеспечить возбуждение сверхмощных машин, токи возбуждения которых превышают 5500А, свойственных системе СТН – рис.5.2. Выпрямленное номинальное напряжение составляет до 600В, а выпрямленный номинальный ток до 7800А. Система охлаждения вращающегося диодного выпрямителя – естественная воздушная.

Регулирование возбуждения генератора осуществляется путем управления током обмотки возбуждения обращенного возбудителя. Типовой комплект системы включает в себя автомат гашения поля, тиристорный разрядник и два преобразовательно-регулирующих канала (AVR-1, AVR-2) автоматических регуляторов возбуждения основного и резервного каналов соответственно. Один из каналов (AVR-1) находится в активном режиме, другой (AVR-2) – в горячем резерве. В частном случае основной канал регулирования получает питание от выпрямительного трансформатора, подключенного к генераторному токопроводу, а резервный – через выпрямительный трансформатор от шин собственных нужд электростанции.

Система бесщеточная диодная (СБД)

Рис.5.5. Система бесщеточная диодная (СБД) с тиристорным возбуждением (ТВ-1, ТВ-2) обмотки возбуждения возбудителя (ОВВ). СГ – синхронный генератор; ОВГ – обмотка возбуждения генератора; ДСВ – диодный синхронный возбудитель; ДВ – вращающийся диодный выпрямитель; В – обращенный синхронный возбудитель и его обмотка возбуждения ОВВ; ТВ-1, ТВ-2 – тиристорные выпрямители первого и второго канала для питания ОВВ; ВТ-1, ВТ-2 – выпрямительные трансформаторы первого и второго каналов; АРВ-1, АРВ-2 – автоматические регуляторы возбуждения первого и второго каналов; Р1, Р2, Р3, Р4 – разъединители; ТТ1, ТТ2, ТН1, ТН2 – измерительные трансформаторы тока и напряжения первого и второго каналов; ТА11, ТА12 – датчики тока возбуждения возбудителя; АГП – автомат гашения поля; ТР – тиристорный разрядник.

Система бесщеточная диодная (СБД)

Рис.5.6. Система бесщеточная диодная (СБД) возбуждения дизель-генератора. СГ – синхронный дизель-генератор; ОВГ – обмотка возбуждения; ДВ – диодный выпрямитель; Т – тиристор; АРВ – автоматический регулятор возбуждения; ИТТ, ИТН – измерительные трансформаторы тока и напряжения; ТСТ с МШ – трехобмоточный суммирующий трансформатор с магнитным шунтом.

Бесщеточная диодная система возбуждения (СБД) обладает меньшим быстродействием по сравнению с тиристорными системами (СТС и СТН). Так, время нарастания напряжения возбуждения до максимального значения при уменьшении напряжения прямой последовательности в точке регулирования на 5% от номинального составляет величину не более 50мс, тогда как в тиристорных системах – не более 25 мс.

В схеме на рис.5.4а питание обмотки возбуждения диодного возбудителя осуществляется от магнитоэлектрического подвозбудителя с постоянными магнитами, а в схеме на рис.5.4б – от выпрямительного трансформатора, подключенного у генераторному токопроводу возбужденной машины. В обоих случаях для питания обмотки возбуждения (ОВВ) обращенного возбудителя (В) используется тиристорный выпрямитель, управляемый системой АРВ.

Система бесщеточная диодная (СБД)

Рис.5.7. Система бесщеточная диодная (СБД) возбуждения дизель-генератора. СГ – синхронный генератор; ОВГ – обмотка возбуждения генератора; ДСВ – диодный синхронный возбудитель; ДВ – вращающийся диодный выпрямитель; В – обращенный синхронный возбудитель; ОВВ – обмотка возбуждения возбудителя; ПВ – магнитоэлектрический подвозбудитель с постоянными магнитами; АРВ – автоматический регулятор возбуждения; ТВ – тиристорный выпрямитель для питания ОВВ.

Как один из современных вариантов схемы рис.5.4б с выпрямительным трансформатором (ВТ) на рис.5.5 представлена бесщеточная диодная система (СБД) с тиристорным питанием по двум каналам (от сети СН через ВТ-2 и от токопровода генератора через ВТ-1) обмотки возбуждения возбудителя (ОВВ).


Системы возбуждения для дизель-генераторов

АО «Электросила” является производителем дизель-генераторов мощностью от 200 до 6300 кВт с широким спектром напряжений и частот вращения. Для дизель-генераторов изготавливаются два типа систем возбуждения: паундированием, реализованная на базе трехобмоточного суммирующего трансформатора с магнитным шунтом и управляемого тиристорно-диодного преобразователя представлена на рис.5.6. Силовая часть выполнена в виде блока с принудительным охлаждением и размещена на корпусе генератора. Малогабаритный регулятор напряжения устанавливается в щите управления энергоблоком.

Система бесщеточная с диодным синхронным возбудителем (СБД), магнитоэлектрическим подвозбудителем с постоянными магнитами и статическим тиристорным регулятором возбуждения представлена на рис.5.7.

Вращающаяся часть оборудования системы (дизель-генератор, диодный синхронный возбудитель и магнитоэлектрический подвозбудитель) за счетсовмещения конструкции изготавливается в виде компактного блока, установленного на валу генератора.

Регулятор возбуждения размещен в отдельном шкафу. Основные характеристики систем возбуждения дизель-генераторов представлены в таблице 5.1.

Основные характеристики систем возбуждения дизель-генераторов

Таблица 5.1. Основные характеристики систем возбуждения дизель-генераторов. Системы возбуждения дизель-генераторов характеризуются полной автономностью – начальное возбуждение обеспечивается исключительно за счет внутренних источников.


Автоматы гашения поля (АГП)

Автоматы гашения поля предназначены для коммутации цепей обмоток возбуждения турбо- и гидрогенераторов, имеющих контактные кольца на роторе, а также для гашения поля этих машин.

Оптимальные условия для интенсивного снижения тока ротора до нулевого значения обеспечиваются при разряде обмотки возбуждения на нелинейный резистор, сопротивление которого изменяется обратно пропорционально величине тока.

Благодаря специальной конструкции кольцевой дугогасительной решетки автомата гашения поля, горящая в ней дуга обладает вольтамперной характеристикой нелинейного резистора, обеспечивающей минимальное время гашения поля и безопасный уровень напряжения на кольцах ротора. Основные характеристики АГП производства АО «Электросила” представлены в табл.5.2.

Основные характеристики АГП

Что такое возбуждение генератора. Системы возбуждения

Все турбогенераторы, гидрогенераторы, дизель-генераторы, синхронные компенсаторы и двигатели, изготавливаемые в настоящее время, оснащаются современными полупроводниковыми системами возбуждения - рис.5.2 - 5.7. В этих системах используется принцип выпрямления трехфазного переменного тока повышенной или промышленной частоты возбудителей или напряжения возбуждаемой машины.

Электромашинные системы возбуждения (рис.5.1), выпускавшиеся заводами более 30 лет назад и находящиеся до сих пор в эксплуатации, могут быть заменены на современные полупроводниковые статические системы с любым набором заданных функций.

Системы возбуждения обеспечивают следующие режимы работы синхронных машин:

Начальное возбуждение;

Холостой ход;

Включение в сеть методом точной синхронизации или самосинхронизации;
. работу в энергосистеме с допустимыми нагрузками и перегрузками;
. форсировку возбуждения по напряжению и по току с заданной кратностью;
. разгрузку по реактивной мощности и развозбуждение при нарушениях в энергосистемах;
. гашение поля генератора в аварийных режимах и при нормальной остановке;
. электрическое торможение агрегата.

Рис.5.1. Система независимого возбуждения с возбудителем постоянного тока.
КК - контактные кольца, Rсс и КСС - сопротивление и контактор самосинхронизации, РВ - резервный возбудитель, АГП - автомат гашения поля, АГПВ - автомат гашения поля возбудителя, Rр - регулировочный реостат, Rд и Rгасв - резисторы добавочный и гасительный в цепи ОВВ, ДОВВ - добавочная обмотка возбуждения возбудителя.
Для оснащения турбо- и гидрогенераторов выпускается три типа систем возбуждения :
. системы тиристорные независимые (СТН) - рис.5.2;
. системы тиристорные самовозбуждения (СТС) - рис.5.3;
. системы бесщеточные диодные (СБД) - рис.5.4

Системы тиристорного независимого возбуждения (СТН)

Системы тиристорные независимые (СТН) предназначены для питания обмотки возбуждения крупных турбо- и гидрогенераторов выпрямленным регулируемым током, применяемые при выработке электроэнергии на ГЭС и других генерирующих станциях - рис.5.2.

В отличие от систем самовозбуждения (СТС), в СТН тиристорные выпрямители главного генератора получают питание от независимого источника напряжения переменного тока промышленной частоты - от вспомогательного синхронного генератора, вращающемся на одном валу с главным генератором.

Рис.5.2. Система тиристорная независимая (СТН) с возбудителем переме

нного тока и двумя группами тиристоров, в сочетании со схемой резервного возбуждения от двухмашинного агрегата асинхронный двигатель-возбудитель постоянного тока. В - возбудитель (вспомогательный генератор) переменного тока, ОВВ обмотка возбуждения возбудителя, ВРГ, ВФГ - тиристорные вентили рабочей и форсировочной групп, ВВВ - тиристорные вентили выпрямителя возбудителя, СУВРГ, СУВФГ, СУВВВ - системы управления вентилями соответствующих групп, ВТВ - выпрямительный трансформатор возбудителя, ТСНВ - трансформатор СН тиристорных выпрямителей.

Вспомогательный генератор переменного тока возбуждения построен по схеме самовозбуждения. СТН обладает важным преимуществом - её параметры не зависят от процессов, протекающих в энергосистеме. Благодаря наличию вспомогательного генератора, сохраняется независимость возбуждения от длительности и удаленности и других возмущений в энергосистеме, и высокая скорость нарастания напряжения возбуждения: не более 25 мс до достижения максимального значения при уменьшении напряжения прямой последовательности в точке регулирования на 5%. В системе СТН обеспечивается быстрое снятие возбуждения за счет изменения полярности напряжения возбуждения: время развозбуждения от максимального положительного до отрицательного минимального напряжения возбуждения не превышает 100 мс.

Рис.5.3. Система тиристорного самовозбуждения (СТС) с выпрямительным трансформатором (ВТ) и двумя группами тиристоров. ТСНР, ТСНФ - трансформаторы СН тиристорных выпрямителей рабочей и форсировочной групп.
В системе СТН выпрямленное номинальное напряжение может составлять 700 В, а выпрямленный номинальный ток - до 5500А. Кратности форсировки по напряжению и току составляют не менее двух единиц, а длительность форсировки - от 20 до 50 с. Точность поддержания напряжения генератора - не хуже ±0,5% и до ±1%.
Система охлаждения тиристорного выпрямителя в системах СТН и СТС может быть принудительно воздушной, естественной воздушной или водяной.


Система тиристорного самовозбуждения (СТС) предназначена для питания обмоток возбуждения турбо и гидрогенераторов выпрямленным регулируемым током - рис.5.3.
Питание тиристорного выпрямителя осуществляется через трансформатор, подключенный к генераторному токопроводу. Для запуска генератора предусмотрена цепь начального возбуждения, которая автоматически формирует кратковременный импульс напряжения на обмотке ротора до появления ЭДС обмотки статора генератора. Импульс напряжения достаточен для поддержания устойчивой работы тиристорного преобразователя в цепи самовозбуждения. Питание цепей начального возбуждения осуществляется как от источника переменного тока, так и от станционной аккумуляторной батареи.
В системе СТС выпрямленное номинальное напряжение составляет до 500 В, а выпрямленный номинальный ток - не более 4000 А, т.е. эти значения несколько ниже, чем в системах СТН. Благодаря высокому быстродействию управляемого выпрямителя и предельным уровням напряжения и тока возбуждения в сочетании с эффективными законами управления система СТС обеспечивает высокое качество регулирования и большие запасыустойчивости энергосистем. По этим показателям система СТС соответствует значениям системы СТН.
В системе СТН интенсивное гашение поля генераторов в нормальных условиях эксплуатации достигается за счет перевода тиристорного преобразователя в инверторный режим изменением полярности напряжения возбуждения - время развозбуждения не превышает 100 мс.
Экстренное снятие возбуждения в аварийных режимах обеспечивается автоматом гашения поля - электрическим аппаратом специальной конструкции, который при срабатывании производит оптимальное гашение поля генератора (АГП).

Рис.5.4. Система бесщеточная диодная (СБД) независимого возбуждения: а - с подвозбудителем (ПВ), б - без подвозбудителя, с питанием обмотки возбуждения возбудителя (ОВВ) от выпрямительного трансформатора (ВТ). ДВ - вращающиеся диодные вентили.
Действие АГП заключается в уменьшении времени гашения поля при соблюдении предельно допустимой по условиям электрической прочности изоляции величины напряжения на обмотке возбуждения. Защита ротора от перенапряжений выполняется на основе быстродействующих тиристорных разрядников.
Учитывая высокую надежность тиристорных выпрямителей и улучшение их параметров по токам и напряжениям, в схемах возбуждения могут применяться вместо двух групп вентилей (ВРГ, ВФГ) одну группу с необходимой кратностью форсировки - рис.5.5.

Система тиристорного самовозбуждения резервная (СТСР)

В схемах рис.5.1, 5.2, 5.3 благодаря наличию контактных колец на роторе можно использовать систему резервного возбуждения. В прежних системах использовался двухмашинный агрегат из асинхронного двигателя, соединенного с генератором постоянного тока. Асинхронный двигатель получал питание от шин собственных нужд и был общим для нескольких генераторов. В современной системе тиристорного самовозбуждения резервной (СТСР) использован принцип тиристорного выпрямления от разделительного трансформатора, также присоединенного к системе собственных нужд станции. Назначение этих систем - питание обмотки ротора синхронной машины в случаях, когда основная система вследствие неисправности или

Моделирование в электроэнергетике - Основные элементы системы возбуждения

Основные элементы системы возбуждения

Неотъемлемой частью синхронных машин является система возбуждения. Система возбуждения предназначена для питания обмотки возбуждения генератора, автоматически регулируемым постоянным током.

Системой возбуждения (СВ) называется совокупность оборудования, аппаратов и устройств, объединённых соответствующими цепями, которая обеспечивает необходимое возбуждение генераторов и синхронных компенсаторов в нормальных и аварийных режимах, предусмотренных ГОСТ и техническими условиями. В систему возбуждения входят: возбудитель, автоматический регулятор возбуждения (АРВ), коммутационная аппаратура, измерительные приборы, средства защиты ротора от перенапряжений и защиты оборудования системы возбуждения от повреждений [п.5.2.36, ПУЭ].

Обобщенная схема соединения генератора, системы возбуждения и АРВ приведена на рис. 1.

Рис. 1. Обобщенная схема соединения генератора, системы возбуждения и АРВ

Напряжение на выходе системы возбуждения Uf  и ток возбуждения if  изменяются под действием сигнала, поступающего от АРВ. Требуемый вид этого сигнала зависит от технического исполнения системы возбуждения. В целом схема рис. 1 представляет собой замкнутую систему автоматического регулирования, управляемую на основе обработки по определенному алгоритму режимных параметров, получаемых от трансформаторов напряжения и тока.

Основной элемент системы возбуждения (СВ) – возбудитель, являющийся регулируемым источником постоянного тока. Он может быть выполнен в виде коллекторного генератора постоянного тока, генератора переменного тока с выпрямительным преобразователем или трансформатора с выпрямительным преобразователем. Применение генератора постоянного тока для возбуждения турбогенератора ограничено трудностями, связанными с работой коллектора при высокой скорости вращения. Поэтому на более мощных генераторах применяются возбудители с выпрямителями. Если источником переменного тока, питающим возбудитель, является генератор, выпрямитель может быть неуправляемым (диодным) или управляемым (тиристорным). В первом случае выпрямительный преобразователь проще и надежнее, во втором обеспечено более высокое быстродействие. Если выпрямительный преобразователь питается от трансформатора, он выполняется тиристорным.

Неотъемлемым элементом системы возбуждения является АРВ. Основными задачами АРВ являются поддержание заданного уровня напряжения на выводах генератора (на шинах высокого напряжения электростанций) с заданным статизмом (1-5%). Также с помощью АРВ обеспечивается повышение устойчивости параллельной работы генераторов при нарушениях нормального режима работы энергосистемы. Наиболее распространённым видом АРВ является АРВ сильного действия (АРВ-СД), в котором содержатся каналы демпфирования по производным напряжения и частоты статора и тока ротора.

Помимо перечисленных устройств, в систему возбуждения входят автомат гашения поля (АГП) и устройство начального возбуждения.

Классификация систем возбуждения.

Системы возбуждения генераторов и СК классифицируются по разным признакам.

П.1. Системы возбуждения по способу получения питания разделяют на системы независимого возбуждения (СНВ) и системы самовозбуждения (ССВ) и комбинированные.

Независимость оценивается относительно цепи якоря возбуждаемой машины. В схеме СНВ источником является вспомогательный генератор (ВГ), сочленённый с валом возбуждаемой машины (рис. 2г, д, е). Основным преимуществом этого способа является независимость возбуждения от режима работы электрической сети и, как следствие, большая надёжность. Недостатки такой системы определяются недостатками самого возбудителя: невысокая скорость нарастания возбуждения, сниженная надёжность работы коллекторного узла при высоких частотах вращения. В схемах ССВ источниками являются выпрямительные трансформаторы ВТ и ПТ, подключенные непосредственно к цепи якоря генератора (рис. 1а, б). Такие системы возбуждения менее надёжны, чем СНВ. Короткие замыкания в сети, сопровождающиеся понижением напряжения, нарушают нормальную работу системы возбуждения, которая именно в этих режимах должна обеспечивать форсировку тока в обмотке ротора генератора. В комбинированных системах главный преобразователь – диодный выпрямитель питается от ВГ, а тиристорный преобразователь (ТП) питается через выпрямительный трансформатор от выводов генератора (рис. 1в). Примеры каждого из видов показаны на рис. 2.

Рис. 2. Структурные схемы систем возбуждения

а – статическая тиристорная система параллельного самовозбуждения,

б – статическая система смешанного возбуждения,

в – комбинированная одномашинная диодная система возбуждения (как правило, бесщёточная),

г – одномашинная система независимого тиристорного возбуждения,

д – одномашинная диодная система независимого возбуждения (высокочастотная),

е – двухмашинная диодная система независимого возбуждения (высокочастотная или бесщёточная)

П.2. Системы возбуждения по типу вентилей главного преобразователя разделяют на диодные и тиристорные.

В тиристорных системах АРВ воздействует на управление тиристорными преобразователями, в диодных – на управление возбуждением ВГ.

П.3. Системы возбуждения также разделяют на статические, бесщёточные (вращающиеся) и комбинированные.

Статические СВ – это системы, содержащие только неподвижные элементы. Статическими являются только ССВ. У бесщёточных СВ вращаются вентильный преобразователь и якорь обращённого ВГ, и поэтому связь с обмоткой возбуждения генератора осуществляется жёстким соединением без контактных колец и щёток. У комбинированных СВ статическим является вентильный преобразователь, питаемый от ВГ традиционного исполнения.

Помимо сказанного, выделяют параллельные и комбинированные ССВ. Первые (рис. 2а) содержат только один выпрямительный трансформатор, подключаемый к зажимам генератора. Вторые имеют еще и последовательный трансформатор (ПТ), включаемый последовательно в цепь статора (рис. 2б).

У бесщёточных СВ генератор и преобразователь выполняются трёхфазными и многофазными, у комбинированных СНВ вспомогательный генератор выполняется синхронным или индукторным (высокочастотным).

Независимые СВ выполняются одномашинными (рис. 2г, д) и двухмашинными (рис. 2е). У одномашинных СВ ВГ имеет систему самовозбуждения, у двухмашинных – на основе подвозбудителя, выполняемого в виде генератора с постоянными магнитами или индукторного генератора.

Кроме этого, тиристорные СВ могут иметь одногрупповой или двухгрупповой ТП. У последних одна группа, рабочая, рассчитывается на уровни напряжения нормальных режимов, а вторая, форсировочная, имеет повышенное напряжение питания, обеспечивающее форсировку возбуждения.

Общие требования к системам возбуждения.

В нормальном режиме источник возбуждения должен обеспечивать на кольцах ротора номинальное напряжение и номинальный ток возбуждения, при которых генератор выдаёт номинальную мощность. В целях создания запаса по нагреву номинальные значения напряжения и тока системы возбуждения должны превышать номинальные значения напряжения и тока обмотки возбуждения генератора или компенсатора не менее чем 10%.

В аварийном режиме к источнику возбуждения предъявляются требования в отношении быстродействия и предела изменения напряжения на кольцах ротора. С этих позиций система возбуждения оценивается двумя величинами: скоростью нарастания напряжения и кратностью максимального значения напряжения по отношению к номинальному.

Рис. 3. Изменение напряжения возбуждения при форсировке

В соответствии с изложенным количественные характеристики систем возбуждения определяются следующим образом.

П.1.Кратность форсировки возбуждения по напряжению – это потолочное установившееся напряжение системы возбуждения, выраженное в долях номинального напряжения возбуждения

                                       

где   – потолочное напряжение СВ,   – номинальное напряжение СВ.

Для современных систем возбуждения кратность форсировки возбуждения по напряжению составляет

П.2.Скорость изменения напряжения возбуждения – это скорость нарастания или снижения напряжения системы возбуждения или возбудителя при необходимости изменения этого напряжения, выраженная в вольтах в секунду или в относительных единицах в секунду по отношению к номинальному напряжению возбуждения синхронной машины.

  , о.е./с.

где – разница между потолочным и номинальным значением напряжения возбуждения, – номинальное напряжение возбуждения, t1 – время, за которое напряжение возрастает от номинального значения до значения 

Так как скорость изменения напряжения возбуждения определяется по точке эквивалентного экспоненциального процесса, то представляется возможным заменить в приближенных исследованиях (!) систему возбуждения инерционным звеном первого порядка с передаточной функцией

                                      где  – коэффициент усиления звена, замещающего систему возбуждения, – постоянная времени звена.

Различные системы возбуждения имеют ориентировочно следующие постоянные времени:

Тиристорные= 0.02-0.04 с.

Бесщеточная  = 0.1-0.15 с.

Высокочастотная  = 0.35 с.

Электромашинная с генератором постоянного тока = 0.3-0.5 с.

Номинальная скорость нарастания напряжения возбуждения принимается равной 2 относительных единиц в секунду. Большинство современных вентильных СВ имеет скорость нарастания напряжения значительно большую, чем представленная.

Возбуждение синхронных генераторов



Обмотки роторов синхронных генераторов получают питание от специальных источников постоянного тока, называемых возбудителями.

Мощность возбудителей составляет 0,3-1% мощности генератора, а номинальное напряжение - от 100 до 650 В. Чем мощнее генератор, тем обычно больше номинальное напряжение возбуждения.

Современные схемы возбуждения кроме возбудителя содержат большое количество вспомогательного оборудования. Совокупность возбудителя, вспомогательных и регулирующих устройств принято называть системой возбуждения.

Электрическое соединение возбудителя с обмоткой ротора генератора выполняется преимущественно при помощи контактных колец и щеток. Созданы и применяются бесщеточные системы возбуждения.

Системы возбуждения должны быть надежными и экономичными, допускать регулирование тока возбуждения в необходимых пределах, быть достаточно быстродействующими, а также обеспечивать потолочное возбуждение при возникновении аварии в сети.

Регулируя ток возбуждения, изменяют напряжение синхронного генератора и отдаваемую им в сеть реактивную мощность. Регулирование возбуждения генератора позволяет повысить устойчивость параллельной работы.

При глубоких снижениях напряжения, которые имеют место, например, при коротких замыканиях, применяется форсировка (быстрое увеличение) возбуждения генераторов, что способствует прекращению электрических качаний и сохранению устойчивости параллельной работы генераторов. Кроме того, быстродействующее регулирование и форсировка возбуждения повышают надежность работы релейной защиты и облегчают условия самозапуска электродвигателей собственных нужд электростанций.

Рис.1. Изменение напряжения возбуждения при форсировке

Важнейшими характеристиками систем возбуждения являются: быстродействие, определяемое скоростью нарастания напряжения на обмотке ротора при форсировке V = 0,632(Uf,пот - Uf,ном) / Uf,номt1 (рис.1), и отношение потолочного напряжения к номинальному напряжению возбуждения Uf,пот / Uf,ном = kф - так называемая кратность форсировки.

Согласно ГОСТ турбогенераторы должны иметь kф≥2, а скорость нарастания возбуждения не менее 2 1/с. Кратность форсировки для гидрогенераторов должна быть не менее 1,8 для коллекторных возбудителей, соединенных с валом генератора, и не менее 2 для других систем возбуждения. Скорость нарастания напряжения возбуждения должна быть не менее 1,3 1/с для гидрогенераторов до 4 MBА включительно и не менее 1,5 1/с для гидрогенераторов больших мощностей.

Для мощных гидрогенераторов, работающих на дальние электропередачи, к системам возбуждения предъявляется более высокое требование (kф=3-4, скорость нарастания возбуждения до 10Uf,ном в секунду).

Обмотка ротора и системы возбуждения генераторов с косвенным охлаждением должны выдерживать двукратный по отношению к номинальному ток в течение 50 с. Для генераторов с непосредственным охлаждением обмоток ротора это время сокращается до 20 с, для генераторов 800-1000 МВт принято время 15 с, 1200 МВт - 10 с (ГОСТ533-85Е).

Системы возбуждения генераторов можно разделить на две группы: независимое возбуждение и самовозбуждение (зависимое возбуждение).

К первой группе относятся все электромашинные возбудители постоянного и переменного тока, сопряженные с валом генератора. Вторую группу составляют системы возбуждения, получающие питание непосредственно от выводов генератора через специальные понижающие трансформаторы. К этой группе могут быть отнесены системы возбуждения с отдельно установленными электромашинными возбудителями, приводимыми во вращение электродвигателями переменного тока, которые получают питание от шин собственных нужд электростанций.

Независимое возбуждение генераторов

Независимое возбуждение генераторов получило наибольшее распространение. Основное достоинство этого способа состоит в том, что возбуждение синхронного генератора не зависит от режима электрической сети и поэтому является наиболее надежным.

На генераторах мощностью до 100 МВт включительно применяют, как правило, в качестве возбудителя генератор постоянного тока, соединенный с валом синхронного генератора (рис.2).

Рис.2. Принципиальная схема независимого электромашинного возбуждения генератора

Возбуждение самого возбудителя выполнено по схеме самовозбуждения (обмотка возбуждения возбудителя LGE питается от якоря самого возбудителя). Регулирование возбуждения возбудителя осуществляется вручную шунтовым реостатом RR, установленным в цепи LGE, или автоматически регулятором возбуждения АРВ.

Недостатки системы возбуждения с генератором постоянного тока определяются в основном недостатками самого возбудителя. Одним из недостатков является сравнительно невысокая скорость нарастания возбуждения, особенно у возбудителей гидрогенераторов, которые имеют низкую частоту вращения (V=1-2 1/с).

Другой недостаток рассматриваемой системы возбуждения характерен для турбогенераторов, имеющих большую частоту вращения. Он обусловлен снижением надежности работы генератора постоянного тока из-за вибрации и тяжелых условий работы щеток и коллектора (условий коммутации).

Для турбогенераторов мощностью выше 165 МВт мощность возбуждения становится настолько значительной, что выполнить надежно работающий генератор постоянного тока на частоту вращения 3000 об/мин по условиям коммутации становится затруднительным.

Для снижения частоты вращения возбудителя с целью повышения надежности его работы иногда выполняют соединение возбудителя с валом генератора через редуктор. Такая система была применена для ряда турбогенераторов, в том числе и для генераторов ТГВ-300 и ТВМ-300. Недостатком этой системы возбуждения является наличие дополнительной механической передачи.

Для возбуждения крупных генераторов в СССР применяются системы возбуждения с полупроводниковыми выпрямителями.

В системе возбуждения с использованием полупроводниковых выпрямителей с валом турбогенератора сочленен вспомогательный генератор, напряжение которого выпрямляется и подводится к обмотке ротора турбогенератора (рис.3).

Рис.3. Принципиальная схема высокочастотного возбуждения турбогенератора

В качестве вспомогательного генератора применяется высокочастотный генератор индукторного типа. Такой генератор не имеет обмотки на вращающемся роторе, что повышает его надежность в эксплуатации. Повышенная частота (500 Гц) позволяет уменьшить габариты и повысить быстродействие системы возбуждения.

Индукторный высокочастотный генератор-возбудитель ВГТ имеет три обмотки возбуждения, расположенные вместе с трехфазной обмоткой переменного тока на неподвижном статоре. Первая из них LGE1 включается последовательно с обмоткой ротора основного генератора LG и обеспечивает основное возбуждение ВГТ. Благодаря включению LGE1 последовательно с обмоткой ротора основного генератора обеспечивается резкое увеличение возбуждения ВГТ при коротких замыканиях в энергосистеме вследствие броска тока в роторе. Обмотки IGE2 и LGЕЗ получают питание от высокочастотного подвозбудителя GEA через выпрямители. Подвозбудитель (высокочастотная машина 400 Гц с постоянными магнитами), как и вспомогательный генератор ВГТ, соединен с валом турбогенератора.

Регулирование тока в LGE2 и LGE3 осуществляется с помощью двух устройств - соответственно регуляторов электромагнитного типа АРВ (автоматический регулятор возбуждения) и УБФ (устройство бесконтактной форсировки возбуждения).

Устройство АРВ обеспечивает поддержание напряжения генератора в нормальном режиме работы изменением тока в обмотке LGE2. Устройство УБФ обеспечивает начальное возбуждение генератора и его форсировку при снижении напряжений более чем на 5%.

Высокочастотная система возбуждения обеспечивает kф=2 и скорость нарастания напряжения возбуждения не менее 2 1/с.

Рис.4. Принципиальная схема независимого тиристорного возбуждения генераторов

Принципиальная схема системы независимого тиристорного возбуждения (ТН) представлена на рис.4. На одном валу с генератором G располагается синхронный вспомогательный генератор GE, который имеет на статоре трехфазную обмотку с отпайками. В схеме, показанной на рис.4, имеются две группы тиристоров: рабочая VS1 и форсировочная VS2. На стороне переменного тока они включены на разное напряжение, на стороне постоянного тока - параллельно. Возбуждение генератора в нормальном режиме обеспечивает рабочая группа тиристоров VS1, которые открываются подачей на управляющий электрод соответствующего потенциала.

Форсировочная группа при этом почти закрыта. В режиме форсировки возбуждения тиристоры FS2, питающиеся от полного напряжения вспомогательного генератора, открываются полностью и дают весь ток форсировки. Рабочая группа при этом запирается более высоким напряжением форсировочной группы.

Рассмотренная система имеет наибольшее быстродействие по сравнению с другими системами и позволяет получить kф>2. Системы независимого тиристорного возбуждения нашли широкое применение. Ранее, до освоения отечественной промышленностью производства тиристоров достаточной мощности, по аналогичным схемам выполнялись схемы ионного независимого возбуждения (ИН), где применялись ртутные вентили с сеточным управлением.

Все генераторы с рассмотренными выше возбудителями имеют специальную конструкцию для подвода тока к обмотке ротора. Она представляет собой контактные кольца на валу ротора, к которым ток подводится с помощью щеток. Такая контактная система недостаточно надежна. Этот недостаток особенно проявляется при токах возбуждения 3000 А и более (генераторы мощностью 300 МВт и больше).

Перспективной, особенно для турбогенераторов большой мощности, является система бесщеточного возбуждения, не обладающая указанными недостатками. В этой системе возбуждения, сущность которой поясняет рис.5, нет подвижных контактных соединений.

Рис.5. Принципиальная схема бесщеточного возбуждения генераторов

Источником энергии для питания обмотки ротора LG является вспомогательный синхронный генератор GE. Этот генератор выполнен по типу обратимых машин, т.е. обмотка переменного тока расположена на вращающейся части, а обмотка возбуждения неподвижна. Возбуждение генератора GE осуществляется от возбудителя GEA.

Ток от вращающейся обмотки переменного тока вспомогательного генератора подводится через проводники, закрепленные на валу, к вращающемуся полупроводниковому (обычно кремниевому) выпрямителю. Выпрямленный ток подводится непосредственно к обмотке возбуждения основного генератора.

Регулирование тока возбуждения в обмотке ротора LG производится изменением тока в обмотке возбуждения вспомогательного генератора LGE.

Вращающийся полупроводниковый преобразователь VD снаружи закрывается звукопоглощающим кожухом.

Система бесщеточного возбуждения интенсивно совершенствуется и является перспективной для генераторов всех типов, особенно для турбогенераторов большой мощности (300-1200 МВт).

Системы самовозбуждения

Системы самовозбуждения менее надежны, чем системы независимого возбуждения, поскольку в них работа возбудителя зависит от режима сети переменного тока. Короткие замыкания в сети, сопровождающиеся понижением напряжения, нарушают нормальную работу системы возбуждения, которая именно в этих случаях должна обеспечить форсировку тока в обмотке ротора генератора.

Рис.6. Принципиальная схема зависимого электромашинного возбуждения

Принципиальная схема возбуждения синхронного генератора с электромашинным возбудительным агрегатом показана на рис.6. Возбудительный агрегат состоит из асинхронного двигателя М, питающегося от шин собственных нужд электростанции и генератора постоянного тока GE. Для повышения надежности работы возбудительного агрегата при форсировке возбуждения асинхронный двигатель, вращающий возбудитель GE, выбирается с необходимой перегрузочной способностью.

Такие возбудительные агрегаты получили широкое распространение на электростанциях в качестве резервных источников возбуждения.

Рис.7. Принципиальная схема полупроводникового самовозбуждения

Один из возможных вариантов схем самовозбуждения с полупроводниковыми преобразователями представлен на рис.7.

Основными элементами схемы являются: две группы полупроводниковых преобразователей - неуправляемые вентили VD и управляемые VS, трансформатор силового компаундирования ТА и выпрямительный трансформатор ТЕ.

Неуправляемые вентили VD получают питание от трансформаторов ТА, вторичный ток которых пропорционален току статора генератора, управляемые вентили VS получают питание от трансформатора ТЕ, вторичное напряжение которого пропорционально напряжению генератора.

Вентили VD, ток которых пропорционален току статора генератора, обеспечивают возбуждение машины при нагрузке и форсировку возбуждения при коротких замыканиях. Мощность вентилей VS рассчитывают таким образом, чтобы она была достаточна для возбуждения генераторов на холостом ходу и для регулирования возбуждения в нормальном режиме. В номинальном режиме неуправляемые вентили обеспечивают 70-80% тока возбуждения генератора. При надлежащем выборе параметров система полупроводникового самовозбуждения по своим свойствам приближается к системе независимого тиристорного (ионного) возбуждения и поэтому применяется на мощных синхронных машинах. Ранее промышленность широко выпускала системы ионного самовозбуждения с ртутными вентилями.



тиристорная система возбуждения - это... Что такое тиристорная система возбуждения?


тиристорная система возбуждения

3.18 тиристорная система возбуждения: Система возбуждения турбогенератора (гидрогенератора, синхронного компенсатора), в которой переменный ток источника питания преобразуется в постоянный ток возбуждения синхронной машины тиристорными преобразователями;

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

  • Тиреотоксикоз
  • тиристорный электропривод

Смотреть что такое "тиристорная система возбуждения" в других словарях:

  • тиристорная система возбуждения — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN thyristor excitation system …   Справочник технического переводчика

  • бесщёточная тиристорная система возбуждения — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN rotating thyristor excitation system …   Справочник технического переводчика

  • ГОСТ 21558-2000: Системы возбуждения турбогенераторов, гидрогенераторов и синхронных компенсаторов. Общие технические условия — Терминология ГОСТ 21558 2000: Системы возбуждения турбогенераторов, гидрогенераторов и синхронных компенсаторов. Общие технические условия оригинал документа: 3.10 бесщеточная система возбуждения: Система возбуждения турбогенератора… …   Словарь-справочник терминов нормативно-технической документации

  • Турбогенератор — Разобранный турбогенератор Балаковской АЭС Турбогенератор  работающий в паре с турбиной синхронный генератор. Основная функция в преобразовании механической энергии вращения паровой или …   Википедия

  • СТН — система телевизионного наблюдения Источник: http://www.rzd.ru/agency/showarticle.html?article id=26970&he id=2 СТН сеялка туковая навесная Словарь: С. Фадеев. Словарь сокращений современного русского языка. С. Пб.: Политехника, 1997. 527 с. СТН… …   Словарь сокращений и аббревиатур

Системы возбуждения / ПУЭ 7 / Библиотека / Элек.ру

5.2.35. Требования, приведенные в 5.2.36-5.2.52, распространяются на стационарные установки систем возбуждения турбо- и гидрогенераторов и синхронных компенсаторов.

5.2.36 Системой возбуждения называется совокупность оборудования, аппаратов и устройств, объединенных соответствующими цепями, которая обеспечивает необходимое возбуждение генераторов и синхронных компенсаторов в нормальных и аварийных режимах, предусмотренных ГОСТ и техническими условиями.

В систему возбуждения генератора (синхронного компенсатора) входят: возбудитель (генератор постоянного тока, генератор переменного тока или трансформатор с преобразователем), автоматический регулятор возбуждения, коммутационная аппаратура, измерительные приборы, средства защиты ротора от перенапряжений и защиты оборудования системы возбуждения от повреждений.

5.2.37. Электрооборудование и аппаратура систем возбуждения должны соответствовать требованиям ГОСТ на синхронные генераторы и компенсаторы и техническим условиям на это оборудование и аппаратуру.

5.2.38. Системы возбуждения, у которых действующее значение эксплуатационного напряжения или длительного перенапряжения (например, при форсировке возбуждения) превышает 1 кВ, должны выполняться в соответствии с требованиями настоящих Правил, предъявляемыми к электроустановкам выше 1 кВ. При определении перенапряжений для вентильных систем возбуждения учитываются и коммутационные перенапряжения.

5.2.39. Системы возбуждения должны быть оборудованы устройствами управления, защиты, сигнализации и контрольно-измерительными приборами в объеме, обеспечивающем автоматический пуск, работу во всех предусмотренных режимах, а также останов генератора и синхронного компенсатора на электростанциях и подстанциях без постоянного дежурства персонала.

5.2.40. Пульты и панели управления, приборы контроля и аппаратура сигнализации системы охлаждения, а также силовые преобразователи тиристорных или иных полупроводниковых возбудителей должны размещаться в непосредственной близости один от другого. Допускается установка теплообменников в другом помещении, при этом панель управления теплообменником должна устанавливаться рядом с ним.

Пульт (панель), с которого может производиться управление возбуждением, должен быть оборудован приборами контроля возбуждения.

5.2.41. Выпрямительные установки систем возбуждения генераторов и синхронных компенсаторов должны быть оборудованы сигнализацией и защитой, действующими при повышении температуры охлаждающей среды или вентилей сверх допустимой, а также снабжены приборами для контроля температуры охлаждающей среды и силы тока установки. При наличии в выпрямительной установке нескольких групп выпрямителей должна контролироваться сила тока каждой группы.

5.2.42. Системы возбуждения должны быть оборудованы устройствами контроля изоляции, позволяющими осуществлять измерение изоляции в процессе работы, а также сигнализировать о снижении сопротивления изоляции ниже нормы. Допускается не выполнять такую сигнализацию для бесщеточных систем возбуждения.

5.2.43. Цепи систем возбуждения, связанные с анодами и катодами выпрямительных установок, должны выполняться с уровнем изоляции, соответствующим испытательным напряжениям анодных и катодных цепей.

Связи анодных цепей выпрямителей, катодных цепей отдельных групп, а также других цепей при наличии нескомпенсированных пульсирующих или переменных токов должны выполняться кабелем без металлических оболочек.

Цепи напряжения обмотки возбуждения генератора или синхронного компенсатора для измерения и подключения устройства АРВ должны выполняться отдельным кабелем с повышенным уровнем изоляции без захода через обычные ряды зажимов. Присоединение к обмотке возбуждения должно производиться через рубильник.

5.2.44. При применении устройств АГП с разрывом цепи ротора, а также при использовании статических возбудителей с преобразователями обмотка ротора должна защищаться разрядником многократного действия. Допускается применение разрядника однократного действия. Разрядник должен быть подключен параллельно ротору через активное сопротивление, рассчитанное на длительную работу при пробое разрядника в режиме с напряжением возбуждения, равным 110% номинального.

5.2.45. Разрядники, указанные в 5.2.44, должны иметь сигнализацию срабатывания.

5.2.46. Система возбуждения генераторов и синхронных компенсаторов должна выполняться таким образом, чтобы:

1. Отключение любого из коммутационных аппаратов в цепях АРВ и управления возбудителем не приводило к ложным форсировкам в процессе пуска, останова и работы генератора на холостом ходу.

2. Исчезновение напряжения оперативного тока в цепях АРВ и управления возбудителем не приводило к нарушению работы генератора и синхронного компенсатора.

3. Имелась возможность производить ремонтные и другие работы на выпрямителях и их вспомогательных устройствах при работе турбогенератора на резервном возбудителе. Это требование не относится к бесщеточным системам возбуждения.

4. Исключалась возможность повреждения системы возбуждения при КЗ в цепях ротора и на его контактных кольцах. В случае применения статических преобразователей допускается защита их автоматическими выключателями и плавкими предохранителями.

5.2.47. Тиристорные системы возбуждения должны предусматривать возможность гашения поля генераторов и синхронных компенсаторов переводом преобразователя в инверторный режим.

В системах возбуждения со статическими преобразователями, выполненными по схеме самовозбуждения, а также в системах возбуждения с электромашинными возбудителями должно быть применено устройство АГП.

5.2.48. Все системы возбуждения (основные и резервные) должны иметь устройства, обеспечивающие при подаче импульса на гашение поля полное развозбуждение (гашение поля) синхронного генератора или компенсатора независимо от срабатывания АГП.

5.2.49. Система водяного охлаждения возбудителя должна обеспечивать возможность полного спуска воды из системы, выпуска воздуха при заполнении системы водой, периодической чистки теплообменников.

Закрытие и открытие задвижек системы охлаждения на одном из возбудителей не должны приводить к изменению режима охлаждения на другом возбудителе.

5.2.50. Пол помещений выпрямительных установок с водяной системой охлаждения должен быть выполнен таким образом, чтобы при утечках воды исключалась возможность ее попадания на токопроводы, КРУ и другое электрооборудование, расположенное ниже системы охлаждения.

5.2.51. Электромашинные возбудители постоянного тока (основные при работе без АРВ и резервные) должны иметь релейную форсировку возбуждения.

5.2.52. Турбогенераторы должны иметь резервное возбуждение, схема которого должна обеспечивать переключение с рабочего возбуждения на резервное и обратно без отключения генераторов от сети. Для турбогенераторов мощностью 12 МВт и менее необходимость резервного возбуждения устанавливается главным инженером энергосистемы.

На гидроэлектростанциях резервные возбудители не устанавливаются.

5.2.53. На турбогенераторах с непосредственным охлаждением обмотки ротора переключение с рабочего возбуждения на резервное и обратно должно производиться дистанционно.

5.2.54. Система возбуждения гидрогенератора должна обеспечивать возможность его начального возбуждения при отсутствии переменного тока в системе собственных нужд гидроэлектростанции.

5.2.55. По требованию заказчика система возбуждения должна быть рассчитана на автоматическое управление при останове в резерв синхронных генераторов и компенсаторов и пуске находящихся в резерве.

5.2.56. Все системы возбуждения на время выхода из строя АРВ должны иметь средства, обеспечивающие нормальное возбуждение, развозбуждение и гашение поля синхронной машины.

РД 34.45.620-96 Правила технического обслуживания тиристорных систем возбуждения

РОССИЙСКОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО
ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ «ЕЭС РОССИИ»

ДЕПАРТАМЕНТ НАУКИ И ТЕХНИКИ

 

ПРАВИЛА
ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ ТИРИСТОРНЫХ
СИСТЕМ ВОЗБУЖДЕНИЯ

РД 34.45.620-96

 

Вводятся в действие с 01.03.98 г.

РАЗРАБОТАНО АО «Фирма ОРГРЭС»

ИСПОЛНИТЕЛЬ И.Ф. Перельман

УТВЕРЖДЕНО Департаментом науки и техники 05.09.96 г.

Начальник электротехнического отдела    К.М. АНТИПОВ

ВЫПУСКАЮТСЯ ВПЕРВЫЕ

 

Настоящие Правила обязательны для работников, занимающихся наладкой и эксплуатацией тиристорных систем возбуждения (СВ) в энергосистемах РАО «ЕЭС России».

Правила определяют виды и периодичность технического обслуживания работающего и находящегося в резерве оборудования СВ, плановых профилактическо-ремонтных работ выведенного из работы оборудования СВ, программы и объемы работ при разных видах технического обслуживания и ремонта.

Основные положения данных Правил технического обслуживания базируются на материалах [1 ¸ 6]. При рассмотрении вопросов старения, износа оборудования СВ использованы материалы по совершенствованию и реконструкции СВ, изложенные в [7]. Понятия и термины в области эксплуатации, надежности, системы технического обслуживания и ремонта применительно к СВ приведены в приложении 1. Особенностью СВ является то, что она представляет собой единый технологический комплекс, состоящий как из силовых аппаратов (силовые трансформаторы, вспомогательные синхронные генераторы, силовые преобразователи), так и из устройств регулирования, управления, контроля, сигнализации. Вместе с тем, хотя в [1], в [2] и [5] при классификации плановых профилактическо-ремонтных работ электрооборудования не делается разницы между силовым и вторичным оборудованием, в [3] приводятся для этих работ иные обозначения, отличные от приводимых в [1], [2], [5]. Поэтому в настоящих Правилах для удобства пользования ими обозначение плановых профилактическо-ремонтных работ в соответствии с [3] указываются в скобках (см. приложение 1, п. 6.3).

Другой особенностью устройств СВ является то, что они являются устройствами непрерывного действия (в отличие от устройств релейной защиты, которые являются устройствами со статической готовностью к действию, т.е. выполняющими свои функции по требованию) и любой отказ устройства приводит к отказу функционирования. В связи с этим при обслуживании СВ более четко различаются проверки на работающем оборудовании СВ (техническое обслуживание) и проверки, восстанов

Что такое система возбуждения? Определение и типы системы возбуждения

Определение: Система, которая используется для подачи необходимого тока возбуждения в обмотку ротора синхронной машины, такой тип системы называется системой возбуждения. Другими словами, система возбуждения определяется как система, которая используется для создания магнитного потока путем пропускания тока в обмотке возбуждения. Основное требование к системе возбуждения - надежность при любых условиях эксплуатации, простота управления, легкость обслуживания, стабильность и быстрая реакция на переходные процессы.

Требуемая величина возбуждения зависит от тока нагрузки, коэффициента мощности нагрузки и скорости машины. Чем больше возбуждения требуется в системе, когда ток нагрузки велик, скорость меньше и коэффициент мощности системы становится запаздывающим.

Система возбуждения представляет собой единый блок, в котором каждый генератор имеет свой возбудитель в виде генератора. Централизованная система возбуждения имеет два или более возбудителя, питающих шину. Централизованная система стоит очень дешево, но неисправность системы отрицательно сказывается на генераторах переменного тока на электростанции.

Типы систем возбуждения

Системы возбуждения в основном подразделяются на три типа. Их

  1. Система возбуждения постоянного тока
  2. Система возбуждения переменного тока
    • Система возбуждения ротора
    • Бесщеточная система возбуждения
  3. Система статического возбуждения

Их типы подробно описаны ниже.

1. Система возбуждения постоянного тока

Система возбуждения постоянного тока имеет два возбудителя - основной возбудитель и пилотный возбудитель.Выход возбудителя регулируется автоматическим регулятором напряжения (АРН) для управления выходным напряжением на клеммах генератора. Вход трансформатора тока в АРН обеспечивает ограничение тока генератора переменного тока во время повреждения.

Когда выключатель возбуждения разомкнут, резистор разряда возбуждения подключается к обмотке возбуждения, чтобы рассеивать накопленную энергию в обмотке возбуждения, которая имеет высокую индуктивность.

dc-excitation-system

Главный и пилотный возбудители могут приводиться в движение либо от главного вала, либо отдельно от двигателя.Возбудители с прямым приводом обычно предпочтительны, так как они сохраняют единичную систему работы и возбуждение не возбуждается внешними возмущениями.

Номинальное напряжение главного возбудителя составляет около 400 В, а его мощность составляет около 0,5% от мощности генератора переменного тока. Неполадки в возбудителях турбогенератора довольно часты из-за их высокой скорости, поэтому в качестве резервного возбудителя используются отдельные возбудители с приводом от двигателя.

2. Система возбуждения переменного тока

Система возбуждения переменного тока состоит из генератора переменного тока и тиристорного выпрямительного моста, напрямую подключенных к главному валу генератора.Главный возбудитель может быть самовозбужденным или отдельно возбужденным. Системы возбуждения переменного тока можно в общих чертах разделить на две категории, которые подробно поясняются ниже.

а. Вращающаяся тиристорная система возбуждения

Система возбуждения ротора показана на рисунке ниже. Вращающаяся часть обведена пунктирной линией. Эта система состоит из возбудителя переменного тока, стационарного поля и вращающегося якоря. Выход возбудителя выпрямляется двухполупериодной схемой тиристорного мостового выпрямителя и подается на обмотку возбуждения главного генератора.

rotating-thyristor-excitation-system

Обмотка возбуждения генератора также запитана через другую схему выпрямителя. Напряжение возбудителя можно увеличить, используя его остаточный поток. Блок управления источником питания и выпрямителем генерирует управляемый пусковой сигнал. Сигнал напряжения генератора усредняется и сравнивается напрямую с настройкой напряжения оператором в автоматическом режиме работы. В ручном режиме работы ток возбуждения генератора сравнивается с отдельной ручной регулировкой напряжения.

г. Бесщеточная система возбуждения

Эта система показана на рисунке ниже. Вращающаяся часть обведена прямоугольником из пунктирной линии. Бесщеточная система возбуждения состоит из генератора, выпрямителя, главного возбудителя и генератора переменного тока с постоянными магнитами. Главный и пилотный возбудители приводятся в движение главным валом. Главный возбудитель имеет стационарное поле и вращающийся якорь, напрямую подключенные через кремниевые выпрямители к полю главных генераторов переменного тока.

brushless-excitation-system

Пилотный возбудитель - это приводимый от вала генератор с постоянными магнитами, имеющий вращающиеся постоянные магниты, прикрепленные к валу, и трехфазный стационарный якорь, который питает поле основного возбудителя через кремниевые выпрямители в поле главного генератора переменного тока. Пилотный возбудитель представляет собой генератор постоянных магнитов с приводом от вала, имеющий вращающиеся постоянные магниты, прикрепленные к валу, и трехфазный стационарный якорь, который питает главный возбудитель через трехфазные двухполупериодные тиристорные мосты с фазовым управлением.

Система исключает использование коммутатора, коллектора и щеток, имеет короткую постоянную времени и время отклика менее 0,1 секунды. Короткая постоянная времени имеет преимущество в улучшенных динамических характеристиках слабого сигнала и облегчает применение дополнительных сигналов стабилизации энергосистемы.

3. Система статического возбуждения

В этой системе питание берется от самого генератора через трехфазный понижающий трансформатор, подключенный по схеме звезда / треугольник.Первичная обмотка трансформатора подключена к шине генератора, а их вторичная обмотка подает питание на выпрямитель, а также подает питание на схему управления сетью и другое электрическое оборудование.

static-excitation-using-scrs

Эта система имеет очень малое время отклика и обеспечивает отличные динамические характеристики. Эта система снизила эксплуатационные расходы за счет устранения потерь на сопротивление воздуха в возбудителе и технического обслуживания обмоток.

,

Типы систем возбуждения - Центр электротехники

В моем последнем посте я уже рассказывал о системе возбуждения для генератора. Я объясняю в целом основные принципы работы и применения для системы возбуждения.

Чтобы получить более подробную информацию об этой теме, я хочу поделиться некоторой информацией о нескольких типах систем возбуждения, которые обычно используются для генератора.

Я надеюсь, что с его помощью я смогу дать некоторые рекомендации и базовые знания о системе возбуждения для генератора.Я предлагаю для получения более подробной информации и понимания, пожалуйста, свяжитесь с вашим местным поставщиком генераторов. Ниже перечислены типы систем возбуждения для генератора: -

Какие бывают системы возбуждения?

1) Возбуждение переменного тока.

Этот тип возбудителя работает от переменного тока. напряжение питания и номинальная частота от 50 до 250 Гц. На выходе имеется контактное кольцо для выпрямления для встроенных диодных ячеек. Эти типы могут быть заменены на коммутатор на d.c с твердотельным выпрямителем.

Выход питания выпрямителя на ротор генератора с контактным кольцом для системы возбуждения постоянного тока. Обычно пилотный возбудитель изготавливается из постоянного магнита для питания основного возбудителя.

В качестве основного возбудителя, который обычно делается в трех фазах, используется комбинация диодов в виде моста. Плечо моста состоит из нескольких параллельно включенных диодов.

Метод защиты от короткого замыкания заключается в том, что каждый диод имеет индивидуальный предохранитель, чтобы удалить его из электрической цепи, когда это произойдет.

2) Бесщеточное возбуждение.

Эта система возбуждения имеет аналогичную функцию между возбуждением переменного тока с предварительным применением. Выпрямительный диод, установленный на валу возбудителя. Главный возбудитель имеет выходную обмотку якоря на роторе, а его поле - на статоре.

Обычно для выходной частоты ротора с номинальной частотой около 100 и 250 Гц, он подключен к установленным на валу диодам. Ротор главного генератора может обеспечивать выходную мощность напрямую.

Пилотный возбудитель может быть генератором на постоянных магнитах с частотой до 400 Гц. Для небольшого генератора питание может подаваться от клеммы генератора к полю возбудителя.

3) Тиристорное возбуждение.

Для этого типа системы возбуждения он использовал тиристорный выпрямитель для непосредственного управления током поля генератора, и он может реагировать с более быстрой системой, управляя током возбуждения возбудителя. Система возбуждения тиристора необходима для обеспечения контактных колец и щеток для подключения к ротору машины ,

Эта функция важна для предупреждения и реагирования на ошибку или неисправность для стабильности системы из-за критического приложения. Но у нее есть недостаток, поскольку эта система не была разработана коммерчески и не является распространенной системой для генераторов во всем мире. Также трудно обеспечить надежно управлять сигналами к ним от стационарного оборудования.

Мощность возбуждения может подаваться напрямую на связанные главный и пилотный возбудители, или она может подаваться от выводов основного генератора с использованием понижающего трансформатора.

Обычно коэффициент трансформации рассчитан на обеспечение полной выходной мощности при возникновении неисправности системы и снижает напряжение на клеммах машины для системы защиты.

,Система статического и бесщеточного возбуждения генератора

На электростанции мощностью сотни МВт мы используем статическую систему возбуждения, но она требует большего обслуживания, чем бесщеточная. Почему бы нам не перейти на бесщеточную систему? В чем причина этого?

Насколько мне известно, повышенные требования к техническому обслуживанию связаны с контактными кольцами и щетками. Заменить статическую систему возбуждения на бесщеточную не так просто, так как вам придется поменять что-то в роторе и валу машины (удалить соединения с щетками и контактными кольцами, добавить диодный мост, установленный в роторе машины , добавьте новую вращающуюся машину, соединенную с валом и т. д.). Вероятно, настолько дорого (раз уж устройство будет построено), что не стоит его рассматривать.

Кроме того, система статического возбуждения обычно обеспечивает гораздо более быстрый отклик, что повышает стабильность. Кроме того, стабилизатор энергосистемы более эффективен в гашении электромеханических колебаний, чем в бесщеточной системе возбуждения.

Обратите внимание, что в некоторых регионах Северной Америки код сети по существу требует систем возбуждения с высоким коэффициентом усиления и быстрого отклика (системы возбуждения с высоким начальным откликом) из соображений стабильности.Эти требования на практике делают практически невозможным применение бесщеточной (ну вращающейся) системы возбуждения в этих областях.

Бесщеточные системы возбуждения стали гораздо более распространенными в последние годы из-за улучшения характеристик отклика бесщеточных систем и надежности компонентов. Но бесщеточный не подходит для такого большого генератора. Посмотрите на генераторы мощностью 100 и 200 МВт, и вы обнаружите, что большинство из них имеют бесщеточную систему возбуждения (вращающийся диод).Когда вы достигнете 300 МВт, вы увидите, что большинство из них статичны. У каждого типа есть свои преимущества.

Бесщеточные вращающиеся возбудители довольно распространены. И они могут быть применены к крупным установкам, но все зависит от региональных требований или сетевых кодов. Я хотел бы упомянуть один очень важный вопрос, связанный с бесщеточными и статическими системами возбуждения: способность к запуску с нуля.

Обычно статические системы возбуждения питаются от трансформатора возбуждения, подключенного к клеммам генератора или вспомогательной служебной шине установки.В таком случае установка должна иметь независимый источник питания для питания трансформатора возбуждения (по крайней мере, для первого блока на установке), иначе установка не сможет запуститься с нуля.

Способность к черному запуску намного проще достичь с помощью бесщеточной системы возбуждения, поскольку небольшой PMG может использоваться в качестве независимого источника возбуждения.

По этой причине в дизель-генераторах с черным пуском почти всегда используется ГПМ с бесщеточной системой возбуждения. Но я не видел PMG (генератор с постоянными магнитами) на среднем или большом генераторе (скажем,> 50 МВт).У них есть вспомогательное оборудование, которое должно работать, например, насосы смазочного масла, поэтому они редко используются для запуска с нуля. Небольшие турбины внутреннего сгорания также могут хорошо работать в черной пусковой струне. И вы правы, если вы обозначаете установку как «черный старт», вам нужно, чтобы хотя бы первая машина имела PMG. В противном случае вам нужно оставить некоторый запас заряда батареи для мощности возбуждения.

,

Моделирование и моделирование системы статического возбуждения в работе синхронной машины и исследование напряжения на валу

Система статического возбуждения (SES) была реализована в специально разработанной синхронной машине, установленной в испытательной лаборатории. Это одиночная машина большой мощности, работающая в двойном режиме (т.е. двигатель или генератор) с помощью статических источников. Хорошо известно, что подшипники вращающихся машин уязвимы к воздействию напряжений на валу, вызванных статическими источниками.Напряжение на валу также является основной проблемой для этой специальной машины из-за SES. Чтобы выяснить точную причину напряжения на валу, SES этой машины была смоделирована с помощью программного обеспечения Power Systems. Различные формы сигналов, взятые из модели, проверяются с помощью компьютерного моделирования и реальных лабораторных испытаний. После этого также анализируются источники напряжений на валу с помощью БПФ-анализа форм сигналов напряжения и тока ротора.

1. Введение

Существуют различные средства подачи постоянного тока на обмотку возбуждения электрической машины, например, генератор постоянного тока, вращающийся возбудитель и статический преобразователь.После изобретения полупроводниковых приборов стал популярным статический преобразователь. Это также известно как статическая система возбуждения (СЭС). СЭС возникла в начале шестидесятых годов. До этого генераторы переменного тока получали мощность поля постоянного тока в роторе от генератора постоянного тока, отдельно или вместе с тем же валом генератора. SES была успешно испытана на генераторе паровой турбины в 1962 году [1]. В дальнейшем это было реализовано не только на новых генераторах, но и на существующих машинах.Из-за простоты модернизации старые вращающиеся возбудители также были заменены на SES. Начиная с парового электрогенератора, SES была расширена до собственной электростанции в целлюлозно-бумажной промышленности, гидроаккумулирующей станции, электровоза и газовой электростанции [2–6]. SES также была реализована в генераторе короткого замыкания большой мощности [7].

Генератор короткого замыкания - это, по сути, синхронный генератор в испытательной лаборатории высокой мощности, который обеспечивает высокие значения токов короткого замыкания во время испытаний на электрическом силовом оборудовании.Сильное поле постоянного тока необходимо для установления и поддержания напряжения на клеммах генератора во время испытания на короткое замыкание. Старые испытательные лаборатории были оборудованы мощным генератором постоянного тока с отдельным возбуждением, управляемым асинхронным двигателем. Генератор постоянного тока с постоянными магнитами питает поле мощного генератора постоянного тока. В каскадном режиме создается постоянный ток большой мощности, который подается в ротор генератора через контактные кольца и щетки. Для ознакомления с преимуществами SES были также начаты генераторы короткого замыкания, оснащенные тиристорами большой мощности и быстродействующим микропроцессорным контроллером.Один такой генератор короткого замыкания 1500 МВА с SES рассматривается в этой статье (см. Рисунок 1). Кроме SES, к клемме статора этого генератора подключен еще один статический источник, который представляет собой статический преобразователь частоты. С этими двумя источниками статического электричества генератор также может работать как двигатель [8]. Вначале машина запускается и работает как мотор. Во время испытания на короткое замыкание та же машина преобразуется в генератор переменного тока для подачи мощности на тестируемое оборудование.


Во время вращения вал большой высокоскоростной машины обычно заряжается определенным напряжением относительно земли.Это нежелательное напряжение известно как напряжение на валу. Это очень старое и распространенное явление в любой электрической машине. Напряжение на валу было замечено еще в начале 20 века инженерами при изучении различных случаев отказа двигателей. Напряжение на валу в те времена основывалось только на источниках питания синусоидальной формы. Это было замечено в основном из-за разбаланса магнитных потоков по разным причинам. Применение несинусоидальных или статических источников стало применяться на практике через много лет после изобретения полупроводниковых устройств.Вместе с этим появились новые типы валовых напряжений [9]. Доказано, что напряжение на валу при статическом источнике питания более преобладает из-за электростатического явления, а не чисто синусоидального режима [10]. Статическая система возбуждения также добавила новый тип напряжения на валу к основным напряжениям на валу [11].

Подшипниковые токи являются результатом наличия напряжения на валу. Существует три основных типа подшипниковых токов: циркулирующий ток, ток и ток разряда [12–14]. Каждый из этих токов протекает в разных условиях.Помимо механических причин, большинство преждевременных отказов подшипников происходит из-за протекания этих подшипниковых токов. Синфазное напряжение (CMV) [15] также отвечает за протекание тока через подшипники машины на землю. Многие авторы [16–18] представили различные топологии инверторов для устранения CMV. Также предлагаются различные методы фильтрации (например, активная, пассивная или гибридная) для защиты двигателя от пагубного воздействия ЦМВ [19–21].

Большинство проблем, связанных с напряжением на валу и током подшипников, и решения, связанные с работой, были выполнены на асинхронном двигателе [22, 23].В этой статье предлагается другой подход, в котором для исследования берется мощный генератор короткого замыкания.

SES имеет большую функциональную гибкость по сравнению с другими методами возбуждения. Это также дешевле, чем старая обычная мотор-генераторная установка. Характеристики быстрого отклика, простое управление мониторингом и устранение неисправностей - вот некоторые другие преимущества SES. Несмотря на ряд преимуществ, генерация напряжения на валу является основной проблемой среди машин со статическими источниками. О проблеме напряжения на валу генератора короткого замыкания уже сообщалось ранее [24–26].

Эта статья начинается с описания SES. Формы сигналов в различных ключевых точках записываются высокоскоростным самописцем и сохраняются для дальнейшего анализа. Модель Simulink была подготовлена ​​с помощью различных параметров моста преобразователя. Модель запускается, и результаты сравниваются с фактическими сигналами, записанными в системе. С этими результатами начинается обсуждение напряжения на валу.

2. SES: Описание

SES преобразует переменный ток сети в постоянный ток, который дополнительно питает обмотку возбуждения в роторе.Уровень возбуждения в машине должен варьироваться в зависимости от различных режимов работы машины. Это возможно только с выпрямителем с фазовым управлением. Теперь, чтобы улучшить коэффициент мощности и уменьшить уровень гармоник в системе, требуется многоимпульсное преобразование мощности переменного тока в постоянное [27]. Чтобы поддерживать эту теорию, для SES в генераторе короткого замыкания принята конфигурация 12-пульсного преобразователя. Он образован последовательным соединением двух 6-импульсных тиристорных выпрямителей с кремниевым управлением (SCR). В режиме генератора ток ротора очень велик.Чтобы справиться с этим током, в каждую ветвь моста параллельно включены два тиристора. Подробный чертеж показан на рисунке 2.


Схема начинается со специально разработанного преобразователя трансформатора на входе моста. Это понижающий трансформатор с одной первичной и двумя вторичными обмотками. Вторичные обмотки соединены звездой и треугольником, чтобы получить фазовый сдвиг между ними на 30 °. Выпрямленные шестиимпульсные выходы каждого преобразовательного моста соединены последовательно, образуя 12-импульсный выход.Этот ток регулируется путем изменения импульсов затвора тиристора из шкафа управления. Автоматический выключатель постоянного тока выполняет переключение между SES и цепью ротора. Панель SES разделена на две основные части (см. Рисунок 3). Один из них - силовой шкаф, состоящий из тиристоров и демпфирующих цепей. Вторая часть - это ЦП с другими электронными схемами управления и контурами обратной связи. Он называется силовым электронным контроллером (PEC) и действует очень быстро в диапазоне мкс во время последовательности испытаний на короткое замыкание [28].Человеко-машинный интерфейс (HMI), установленный на контроллере, визуализирует все записи о сбоях и отклонениях в SES.


3. SES: формы сигналов

Сигналы SES измеряются на входе и выходе преобразователя и отображаются на рисунках 4, 5 и 6. На рисунке 4 показаны входные напряжения звезды и треугольника моста преобразователя. Можно наблюдать сдвиг фазы на 30 ° между двумя напряжениями (см. Рисунок 4). Выход преобразователя, приложенный к обмотке возбуждения генератора, и ток, протекающий через него, показаны на рисунке 5.Это для выхода генератора переменного тока 3 кВ (см. Рисунок 6).




4. SES: Моделирование

Моделирование SES выполняется для простого понимания его тонкостей. Как уже упоминалось, СЭС представляет собой комбинацию двух тиристорных мостов, соединенных последовательно. То же самое было смоделировано на платформе Simulink [29] (см. Рисунок 7) с одним источником питания, входным трансформатором, двумя тиристорными преобразователями, генераторами импульсов и другими схемами. Модель сформирована с использованием переменных, перечисленных в таблице 1.Все эти параметры взяты из реального преобразователя.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *