Стартовый конденсатор для двигателя: Страница не найдена – Slark Energy

alexxlab | 31.03.1978 | 0 | Разное

Содержание

Подключение пусковых конденсаторов к электродвигателю.

В одной из прошлых статей мы говорили о подборе рабочих конденсаторов для работы  3 ф.(380 Вольт) асинхронного электродвигателя от 1 ф. сети (220 Вольт). А именно о подборе рабочих конденсаторов  по амперметру . Спасибо Вам мои читатели за  множество отзывов и благодарностей, ведь если бы не Вы  уже давно бы забросил это дело.  В одном из писем  присланных мне на почту были вопросы: « Почему  не рассказал о пусковых конденсаторах?», «Почему у меня не запускается двигатель, ведь я всё сделал, как было написано».  А ведь правда что не всегда хватает «рабочих» конденсаторов для пуска электродвигателя под  нагрузкой, и возникает вопрос: «Что же делать?». А вот что: «Нам нужны пусковые конденсаторы». А вот как их подобрать правильно мы сейчас поговорим. И так что мы имеем: 3 фазный электродвигатель, к которому на основе прошлой статье  мы подобрали ёмкость рабочего конденсатора 60 мкФ. Для пускового конденсатора мы берем емкость в 2 – 2,5 раза больше чем ёмкость рабочего конденсатора. Таким образом, нам понадобится конденсатор ёмкостью 120 – 150 мкФ. При этом рабочее напряжение этих конденсаторов должно быть в 1,5 раза больше напряжения сети. Сейчас у многих возникает вопрос: « А почему не 300 мкФ или даже 1000 мкФ, ведь кашу маслом не испортишь?». Но в не этом случае, всего должно быть в меру, при слишком большей ёмкости пусковых конденсаторов  нечего очень страшного не случиться, но эффективность пуска электродвигателя будет хуже. Таким образом не стоит тратить лишние средства на покупку слишком большой ёмкости.

Но какие, же конденсаторы нужны для пуска электродвигателя?

Если нам нужна небольшая ёмкость пускового конденсатора то вполне подойдёт конденсаторы того же типа которые мы использовали для рабочих конденсаторов.  Но если нам нужно довольно таки  большая ёмкость? Для такой цели не целесообразно использовать такой тип конденсаторов через их дороговизну и размеры (при сборе большой батареи конденсаторов размеры её будут велики).  Для таких целей нам служат специальные пусковые (стартовые) конденсаторы, которые сейчас присутствуют в продаже, в большом ассортименте.  Такие конденсаторы встречаются разных форм и типов, но в их названиях присутствует маркировка (надпись): «Start», «Starting»,  « Motor Start» или что-то в этом роде, все они служат для пуска электродвигателя. Но для лучшей убедительности лучше спросить у продавца при покупке, он всегда подскажет.

 


А вот сейчас Вы скажете: «А как же конденсаторы от старых советских ч/б телевизоров, так называемые «электролиты»?»

Да что я Вам могу сказать по этому поводу. Я сам их не использую, и Вам не рекомендую и даже отговариваю. Всё потому что их использование в качестве пусковых конденсаторов не вполне безопасно. Потому что они могут вздуваться или и того хуже взрываться. К тому же такой тип конденсаторов со временем высыхает и теряет  свою номинальную ёмкость, и мы не можем точно знать, какую именно мы применяем в данный момент.

И так у нас есть электродвигатель, рабочий и пусковой конденсатор. Как нам всё это подключить?

Для этого нам понадобится кнопка ПНВС.

  

Кнопка ПНВС (пускатель нажимной с пусковым контактом) имеет три контакта: два крайних –   с фиксацией и один посередине – без фиксации. Он и служит для включения пускового конденсатора, а при прекращении нажатия на кнопку возвращается в исходное положение (пусковой конденсатор «Сп» включается только во время пуска двигателя, а рабочий конденсатор «Ср» постоянно находиться в работе), другие два крайних контакта остаются включенными и отключаются при нажатии кнопки «Стоп». Кнопку «Пуск» нужно удерживаться до тех пор, пока скорость вала не достигнет максимальных оборотов, и только после её отпустить. Также не стоит забывать, что конденсатор имеет свойство иметь заряд электрического тока, и Вы можете попасть под поражения электрическим током. Что бы этого не случилось, по окончанию работы  отключите электродвигатель от сети, и включите на одну две секунды кнопку «Пуск», чтобы конденсаторы могли разрядиться. Либо параллельно пусковому конденсатору поставьте резистор около 100 килоом, чтобы конденсатор разряжался на него.

У нас с двигателя выходят три провода. Первый и третий  мы подключаем к двум крайним контактам кнопки. Второй же провод мы подключаем к одному из контактов пускового конденсатора «Сп», а второй контакт этого конденсатора к средней  клемме копки ПНВС. Ко второму и третьему проводу, как показано на схеме, подключаем рабочий конденсатор  «Ср».  С другой стороны кнопки два крайних контакта подключаем к сети, а к среднему подключаем «перемычку» к контакту, к которому подключен рабочий конденсатор «Ср».

Схематически это выглядит так:

вариант схемы с реверсом:


Удачи Вам в ваших экспериментах.

Расчет конденсатора для пуска двигателя, схема подключения

  1. Главная
  2. Электрические машины
  3. Конденсатор для пуска двигателя

Тема очень востребованная и вызывающая множество вопросов. Для начала разберемся какие бывают асинхронные электродвигатели переменного тока и в каких случаях применяется подключение через конденсаторы. Затем рассмотрим схемы и формулы для выбора конденсаторов. Задача, которая стоит перед нами в этой статье: подключить трехфазный двигатель к однофазному питанию используя схему с конденсаторами. Для этого будет представлена схема и формулы для выбора значения емкостей конденсаторов.

Двигатели по способу питания делятся на трехфазные и однофазные. Вначале разберемся с подключением через конденсатор трехфазного ЭД.

Коротенько про трехфазные асинхронные электродвигатели

Трехфазные асинхронные электродвигатели получили широкое применение в различных отраслях промышленности, сельского хозяйства, быту. ЭД состоит из статора, ротора, клеммной коробки, щитов с подшипниками, вентилятора и кожуха вентилятора.

Стягивающие шпильки я уже снимать не стал, чтобы добраться до статора с ротором. Но выпирающая часть, на которой сидит вентилятор и есть ротор. Ротор – вращающаяся часть, статор неподвижная (на рисунке его не видно).

Далее посмотрим на клеммник более внимательно. С одной стороны у нас С1-С2-С3, а ниже – С4-С5-С6. Это начала и концы обмоток фаз электродвигателя. У нас имеются три фазы, так как двигатель трехфазный – С1-С4, С2-С5, С3-С6. Также присутствует на фото ржавый болт заземления, он находится в клеммнике сверху слева.

Соединение, которое видно на фотографии называется “звезда”. Я уже писал про звезду и треугольник для трансформаторов – аналогично и при подключении электродвигателей. Сбоку на фотографии я добавил как выглядит схематично звезда для данного электродвигателя и треугольник. Вся разница в расположении перемычек. Их комбинации определяют схему соединения ЭД.

работа трехфазного электродвигателя без одной фазы при постоянной нагрузке

Электродвигатель может работать от однофазной сети и без дополнительных мер и схем. Например, при повреждении одной из фаз. Однако, в данном случае произойдет снижение частоты вращения. Снижение частоты вращения приведет к увеличению скольжения, что в свою очередь вызовет увеличение тока двигателя.

А возрастание тока приведет к нагреву обмоток. При такой ситуации необходимо разгрузить ЭД до 50%. Работа в таком режиме возможна, однако, если двигатель остановится, то повторно пуститься уже не получится.

почему для пуска от однофазной сети используют именно конденсаторы

Повторный пуск не произойдет, так как магнитное поле статора будет пульсирующим и, коротко говоря, из-за направленности определенных векторов в противоположные стороны ротор будет неподвижен. Чтобы двигатель пустился, нам необходимо изменить расположение этих векторов. Для этого и используют элементы, которые сдвигают фазы векторов. Рассмотрим схему, которая реализует эту возможность.

На схеме мы видим, что обмотка разделилась на две ветви – пусковую и рабочую. Пусковая используется с начала пуска до разворота двигателя, затем отключается и используется только рабочая. Для отключения пусковой можно использовать кнопку, например. Нажал и держи пока не развернулся двигатель, а потом отпускай и цепочка разорвана.

Фазосдвигающими элементами могут выступать сопротивления или конденсаторы. Разница в применении тех или иных в форме магнитного поля. И если, говорить проще, то выбирают конденсаторы, так как при одном значении пускового момента, меньший пусковой ток будет при использовании конденсаторов.

А при одинаковых пусковых токах у схем с конденсатором будет больше начальный вращающий момент, то есть движок будет быстрее разгоняться, что несомненно лучше для эксплуатации.

Важно: подключение через конденсаторы производят для двигателей до 1,5кВ. Вычислено, что для более мощных ЭД стоимость емкостных элементов превысит стоимость самого движка, следовательно, их установка является нерентабельной. Хотя, если достать их нахаляву, что в нашем пространстве не редкость, то можно и попробовать.

как подключить электродвигатель через конденсатор

Так как конденсаторы выгоднее во многих смыслах для пуска ЭД, то разберем пару схемок пуска с применением конденсаторов. Для схемы соединения “треугольник” и для схемы соединения “звезда”.

Пусковая ветвь будет использоваться до момента разворота ЭД, рабочая – напротяжении всей работы двигателя.

конденсаторы для запуска электродвигателя

Логично будет далее разобраться, как рассчитать пусковой и рабочий конденсатор для двигателя. Для правильного подбора нам необходимо знать паспортные данные ЭД, или иметь шильду с заводскими значениями.

Существуют различные схемы и в каждой конденсаторы выбираются по своему. Для схем, приведенных выше расчет емкости конденсаторов осуществляется по двум формулам:

схема “звезда”:

Рабочая емкость = 2800*Iном.эд/Uсети

схема “треугольник”:

Рабочая емкость = 4800*Iном/Uсети

Пусковая емкость в обоих случаях принимается равной 2-3 от рабочей.

В формулах выше Iном – это номинальный ток фазы электродвигателя. Если посмотреть на табличку, где через дробь указываются два тока, то это будет меньший из них. Uсети – напряжение питающей сети(~127, ~220). Значит, вычислили мы ёмкость и следующим шагом нам надо знать напряжение на конденсаторе. Для схем приведенных на рисунках выше напряжение на конденсаторе равняется 1,15 от напряжения сети. Но это напряжение переменного тока, а для выбора конденсаторов надо знать напряжение постоянного тока. Тут нам и понадобится небольшая табличка:

Например, напряжение сети ~220, умножаем на 1,15 получаем 253. В таблице смотрим переменка 250 соответствует постоянке 400В для емкости до 2мкФ, или 600В для емкостей 4-10мкФ. Нужно, чтобы номинальное напряжение конденсатора было равно или больше расчетного.

Далее, зная рабочее напряжение и требуемую емкость подбираем конденсаторы по параметрам: типы и нужное количество. Конденсаторы для пусковой цепи порой так и называются – пусковыми.

Вот так, шаг за шагом, мы разобрали как подключить трехфазный асинхронный электродвигатель в однофазную сеть и что для этого необходимо рассчитать и знать. Существуют и другие схемы для подключения двигателя через конденсатор, но эти вопросы рассмотрим в другой раз в другой статье.

Как отличить пусковой конденсатор от рабочего?

Смотрите также обзоры и статьи:

В целом конденсаторы необходимы для того, чтобы, например, к электросети однофазной подключить двух- и трёхфазный асинхронный двигатель.

Научиться отличать пусковой конденсатор от рабочего, зная некоторые их особенности и характеристики, не так уж и сложно. Давайте попробуем в этом разобраться.

Чем именно отличаются конденсаторы?

Рабочий и пусковой конденсаторы отличаются как емкостью, так условиями применения, способом установки и закрепления. А кроме того – самим предназначением.

Так, собственно первый необходим для того, чтобы качественно сдвигать фазу в цепи. Таким образом он способствует тому, что между обмотками двигателя вырабатывается магнитное поле, которое и приводит мотор к движению. Для этого не приходится прикладывать механику. Примером этому может служить любой электродвигатель в инструментах или установках.

А вот пусковой предназначен для того, чтобы усилить старт двигателя, на который воздействуют механически. Он как бы добавляет мотору оборотов, чтобы тот начал крутиться на нужной скорости с нужным режимом. Такие конденсаторы активно применяются в схемах тяжелых подъемочных механизмов, в наносах и т.п.

По емкости также можно легко отличать рабочий конденсатор от пускового, ведь данная величина обычно раза в два минимум больше у второго. Это объясняется тем, что емкость напрямую зависит от мощности электромотора и обратно пропорциональна величине напряжения в электросети.

Отличия по способу присоединения

Первый подключается обычно во вспомогательную обмотку двигателя, а именно в ее разрыв. При этом вторая обмотка напрямую подключается к сети, а третья – остается свободной. Так получается схема под названием звезда или треугольник.

А пусковой конденсатор присоединяется после рабочего параллельно ему. Для подключения понадобится кнопка (если управление будет вручную) или переключатель (если управлять будет привод).

По условиям эксплуатации

Рабочий конденсатор не зря получил такое свое название – ему приходится постоянно быть задействованным в схеме и держать высокие нагрузки напряжения, ведь он работает в самой обмотке электродвигателя. Из-за этого на концах обмотки рабочего может образоваться в определенные моменты напряжение в 500 и даже 600 вольт, а это в два-три раза выше входящего значения. Словом, рабочие более выносливые, чем пусковые.

Пусковые же не берут на себя нагрузку, превышающую входящие 220 вольт, задействуются только время от времени и ненадолго. Поэтому напряжение максимально допустимое не превышает 1,15 раз. Пусковые могут оставаться работоспособными обычно намного дольше рабочих.

Словом, первый конденсатор – настоящая рабочая «лошадка», благодаря которой происходит сдвиг фаз и собственно трехфазные моторы могут работать от однофазной электросети. А второй – носит скорее вспомогательный характер и имеет кратковременный период занятости. Крайне важно не перепутать эти два элемента, ведь пусковой не сможет выдержать нагрузку рабочего, что может привести к печальным последствиям.

Опубликовано: 2020-11-13 Обновлено: 2021-08-30

Автор: Магазин Electronoff

ПОДХОДЯЩИЕ ТОВАРЫ

Поделиться в соцсетях

Схема подключения двигателя через конденсатор

Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Схема подключения однофазного двигателя через конденсатор

При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

  • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
  • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
  • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Схема подключения трёхфазного двигателя через конденсатор

Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

Онлайн расчет емкости конденсатора мотора

Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

Рабочий конденсатор берут из расчета 0,8 мкФ на 0,1 кВт мощности двигателя;
Пусковой подбирается в 2-3 раза больше.

Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.

Пусковые конденсаторы для моторов

Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

Реверс направления движения двигателя

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».


Проверка и замена пускового конденсатора

 

Для чего нужен пусковой конденсатор?

Пусковой и рабочий конденсаторы служат для запуска и работы элетродвигателей работающих в однофазной сети 220 В.

Поэтому их ещё называют фазосдвигающими.

Место установки – между линией питания и пусковой обмоткой электродвигателя. 

Условное обозначение конденсаторов на схемах

 

Графическое обозначение на схеме показано на рисунке, буквенное обозначение-С  и порядковый номер по схеме.

 

Основные параметры конденсаторов

 

Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).

Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).

Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.

Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:

  • 400 В – 10000 часов
  • 450 В –  5000 часов
  • 500 В –  1000 часов

 

Проверка пускового и рабочего конденсаторов

 

Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.

  • обесточиваем кондиционер
  • разряжаем конденсатор, закоротив еговыводы
  • снимаем одну из клемм (любую)
  • выставляем прибор на измерение ёмкости конденсаторов
  • прислоняем щупы к выводам конденсатора
  • считываем с экрана значение ёмкости

 

У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках.

 

В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх.Щупы включить в гнёзда с обозначением Сх.

Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.

 

У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке.

 

Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F.

   

 

Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. (Если он не автоматический)

К примеру, номинал 2,5 мкФ (μF), на приборе ставим 20 мкФ (μF).

После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором – менее одной секунды, вторым – более одной минуты, так что следует ждать.

Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.

 

Замена и подбор пускового/рабочего конденсатора

 

Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс “+” и минус “-” и их можно подключить как угодно.

Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения – термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.

Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов:

Собщ12+…Сп

То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.

Такая замена абсолютно равноценна одному конденсатору большей ёмкости.

Если во время замены перепутались провода, то правильное подключение можно посмотреть по схеме на корпусе или здесь: Схема подключения конденсатора к компрессору

Типы конденсаторов

Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.

Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый. 

Самые доступные конденсаторы такого типа CBB65.

 

Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.

Наиболее распространённые конденсаторы   этого типа CBB60, CBB61.

Клеммы для удобства соединения сдвоенные или счетверённые.

 

Какой конденсатор нужен для двигателя от стиральной машины?

Прекрасно, когда есть возможность подключить мотор к нужному типу напряжения. Но иногда возникает ситуация, что трехфазный мотор приходится «питать» от однофазной сети. Например, если умельцы берут движок от стиралки и создают на его основе токарный станок или другую «самоделку». В таких случаях придется использовать конденсатор для двигателя от стиральной машины. Но их целое множество, поэтому не лишним будет разобраться, как правильно подобрать устройство.

Если нужно запустить трехфазный мотор

Подобрать конденсатор для двигателя от стиральной машины непросто. Самое главное – правильно определить емкость устройства. Но как ее посчитать? Для более точного вычисления показателя применяется сложная формула, но можно воспользоваться и более упрощенным вариантом.

Как быстро прикинуть, какое устройство подойдет в вашем случае? Для расчета конденсаторной емкости упрощенным методом необходимо узнать мощность движка и на каждые 100 Ватт «набросить» примерно 7-8 мкФ. Однако важно не забыть во время вычислений учесть показатель напряжения, воздействующий на статорную обмотку. Это значение не должно превышать номинальный уровень.

Когда запуск электромотора может осуществляться только на основе максимальной загрузки, нужно включить в цепь пусковой конденсатор. Данное устройство характеризуется кратковременным периодом работы – оно функционирует около 3 секунд, до тех пор, пока обороты ротора не достигнут своего пика.

При выборе пускового конденсатора необходимо учитывать, что:

  • по емкости он должен в 2-3 раза превышать показатели рабочего конденсатора;
  • его номинальное напряжение должно превышать сетевой минимум в 1,5 раза.

Главная функция пускового конденсатора – довести ротор электромотора до оптимальной частоты вращения.

Разобравшись в нюансах, можно подбирать и сетевой, и пусковой конденсатор для трехфазного электромотора. Чтобы не ошибиться, важно следовать всем рекомендациям.

Подбираем конденсатор для однофазного мотора

В подавляющем большинстве случаев конденсаторы для асинхронных движков применяются для подключения к «стандартному» напряжению (220 В) с учетом включения устройства в однофазную сеть. Однако процесс их применения гораздо сложнее. Разберемся, почему.

Трехфазные моторы функционируют на основе конструктивного подключения, в то время как для однофазных движков приходится достигать смещенного вращательного момента. Обеспечивается это дополнительным слоем роторной обмотки для запуска. Фаза сдвигается конденсатором.

Почему непросто подобрать конденсатор?

Хотя существенных отличий нет, но разные конденсаторы для асинхронных движков требуют отличные друг от друга способы вычисления допустимого показателя напряжения. Обычно необходимо примерно 100 Ватт на 1 мкФ емкости прибора. У таких моторов существуют несколько возможных режимов работы:

  • ставится пусковой конденсатор, организуется вспомогательный слой обмотки (именно для этапа пуска). В данной ситуации расчет емкости устройства будет таковым – 70 мкФ на киловатт мощности электродвигателя;
  • устанавливается рабочее устройство, конденсаторная емкость которого в пределах 25-35 мкФ. В этом случае будет нужна дополнительная обмотка и постоянное подключение конденсатора на протяжении всего срока работы мотора;
  • используется сетевой конденсатор при одновременном подключении пускового устройства.

В любом случае важно отслеживать уровень нагрева электромотора в ходе его эксплуатации. Заметив перегревание элементов двигателя, следует принять срочные меры. Если стоит рабочий конденсатор, потребуется уменьшить его емкость. Специалисты рекомендуют применять устройства, функционирующие на основе мощности от 450 Ватт или больше, так как они считаются универсальными.

Еще до установки рекомендуется проверить работоспособность конденсатора специальным прибором – мультиметром.

Пусковой конденсатор – это маленький элемент электрической цепи, необходимый для того, чтобы движок как можно скорее «набрал» нужные обороты. Рабочее устройство служит для поддержания оптимальной нагрузки на мотор.

Сконструировать полностью работоспособную схему можно самостоятельно. Между электромотором и кнопкой ПНВС нужно поставить рабочий, а, при необходимости, еще и пусковой конденсатор. Обычно выводы обмоток расположены в клеммной части движка, поэтому модернизация подключения может быть любой.

Следует помнить, что рабочее напряжение пускового конденсатора должно составлять 330-400 Вольт. Это объясняется «всплеском» мощности при запуске или завершении работы мотора.

Так в чем же отличие однофазного асинхронного мотора? Такой тип двигателя чаще встречается в бытовой технике, для его активации необходима вспомогательная пусковая обмотка и конденсатор для смещения фазы. Подключить его допускается на основе множества доступных схем. В продаже встречаются конденсаторы трех видов:

  • полярные;
  • неполярные;
  • электролитические.

Полярные запрещено применять для подключения электромоторов в сеть переменного тока. Диэлектрик внутри устройства быстро разрушится и произойдет замыкание.

Поэтому в данном случае нужно использовать неполярные конденсаторы. Их обкладки будут одинаково взаимодействовать и с источником тока, и с диэлектриком.

   
  • Поделитесь своим мнением – оставьте комментарий

Как подобрать конденсатор для трехфазного двигателя

К каждому объекту изначально подается трехфазный ток. Основная причина заключается в использовании на электростанциях генераторов с трехфазными обмотками, сдвинутыми по фазе между собой на 120 градусов и вырабатывающими три синусоидальных напряжения. Однако при дальнейшем распределении тока потребителю подводится только одна фаза, к которой и подключается все имеющееся электрооборудование. Иногда возникает необходимость в использовании нестандартных устройств, например как подобрать конденсатор для трехфазного двигателя. Как правило, требуется рассчитать емкость данного элемента, обеспечивающего устойчивую работу агрегата.

Принцип подключения трехфазного устройства к одной фазе

Во всех квартирах и большинстве частных домов все внутреннее энергоснабжение осуществляется по однофазным сетям. В этих условиях иногда необходимо выполнить подключение трехфазного двигателя к однофазной сети. Эта операция вполне возможна с физической точки зрения, поскольку отдельно взятые фазы различаются между собой лишь сдвигом по времени.

Подобный сдвиг легко организовать путем включения в цепь любых реактивных элементов – емкостных или индуктивных. Именно они выполняют функцию фазосдвигающих устройств когда используются рабочего и пускового элементов.

Следует учитывать то обстоятельство, что обмотка статора сама по себе обладает индуктивностью. В связи с этим, вполне достаточно снаружи двигателя подключить конденсатор с определенной емкостью. Одновременно, обмотки статора соединяются таким образом, чтобы первая из них сдвигала фазу другой обмотки в одну сторону, а в третьей обмотке конденсатор выполняет эту же процедуру, только в другом направлении. В итоге образуются требуемые фазы в количестве трех, добытые из однофазного питающего провода.

Таким образом, трехфазный двигатель выступает в качестве нагрузки лишь для одной фазы подключенного питания. В результате, в потребляемой энергии образуется дисбаланс, отрицательно влияющий на общую работу сети. Поэтому такой режим рекомендуется использовать в течение непродолжительного времени для электродвигателей небольшой мощности. Подключение обмоток в однофазную сеть может быть выполнено двумя способами – звездой или треугольником.

Схемы подключения трехфазного двигателя к однофазной сети

Когда трехфазный электродвигатель планируется включать в однофазную сеть, рекомендуется отдавать предпочтение соединению треугольником. Об этом предупреждает информационная табличка, закрепленная на корпусе. В некоторых случаях здесь стоит обозначение «Y», что означает соединение звездой. Рекомендуется переподключить обмотки по схеме треугольника, чтобы избежать больших потерь мощности.

Электродвигатель включается в одну из фаз однофазной сети, а две другие фазы создаются искусственным путем. Для этого используется рабочий (Ср) и пусковой конденсатор (Сп). В самом начале запуска двигателя необходим высокий уровень стартового тока, который не может быть обеспечен одним лишь рабочим конденсатором. На помощь приходит стартовый или пусковой конденсатор, подключаемый параллельно с рабочим конденсатором. При незначительной мощности двигателя их показатели равны между собой. Специально выпускаемые стартовые конденсаторы имеют маркировку «Starting».

Эти устройства работают только в периоды пуска, для того чтобы разогнать двигатель до нужной мощности. В дальнейшем он выключается с помощью кнопочного или двойного выключателя.

Виды пусковых конденсаторов

Небольшие электродвигатели, мощность которых не превышает 200-400 ватт, могут работать без пускового устройства. Для них вполне достаточно одного рабочего конденсатора. Однако при наличии значительных нагрузок на старте, обязательно используются дополнительные пусковые конденсаторы. Он подключается параллельно с рабочим конденсатором и в период разгона удерживается во включенном положении с помощью специальной кнопки или реле.

Для расчета емкости пускового элемента необходимо умножить емкость рабочего конденсатора на коэффициент, равный 2 или 2,5. В процессе разгона двигатель требует емкость все меньше и меньше. В связи с этим, не стоит держать пусковой конденсатор постоянно включенным. Высокая емкость при больших оборотах приведет к перегреву и выходу из строя агрегата.

В стандартную конструкцию конденсатора входят две пластины, расположенные напротив друг друга и разделенные слоем диэлектрика. При выборе того или иного элемента, необходимо учитывать его параметры и технические характеристики.

Все конденсаторы представлены тремя основными видами:

  • Полярные. Не могут работать с электродвигателями, подключенными к переменному току. Разрушающийся слой диэлектрика может привести к нагреву агрегата и последующему короткому замыканию.
  • Неполярные. Получили наибольшее распространение. Могут работать в любых вариантах включения за счет одинакового взаимодействия обкладок с диэлектриком и источником тока.
  • Электролитические. В этом случае электроды представляют собой тонкую оксидную пленку. Они могут достигать максимально возможной емкости до 100 тыс. мкФ, идеально подходят к двигателям с низкой частотой.

Выбор конденсатора для трехфазного двигателя

Конденсаторы, предназначенные для трехфазного мотора, должны иметь достаточно высокую емкость – от десятков до сотен микрофарад. Электролитические конденсаторы не годятся для этих целей, поскольку для них требуется однополярное подключение. То есть, специально для этих устройств потребуется создание выпрямителя с диодами и сопротивлениями.

Постепенно в таких конденсаторах происходит высыхание электролита, что приводит к потере емкости. Кроме того, в процессе эксплуатации данные элементы иногда взрываются. Если все же решено использовать электролитические устройства, нужно обязательно учитывать эти особенности.

Классическим примеров служат элементы, представленные на рисунке. Слева изображен рабочий конденсатор, а справа – пусковой.

Подбор конденсатора для трехфазного двигателя выполняется опытным путем. Емкость рабочего устройства выбирается из расчета 7 мкФ на 100 Вт мощности. Следовательно, 600 Вт будет соответствовать 42 мкФ. Пусковой конденсатор как минимум в 2 раза превышает емкость рабочего. Таким образом 2 х 45 = 90 мкФ будет наиболее подходящим показателем.

Выбор осуществляется постепенно, исходя из работы двигателя, поскольку его реальная мощность напрямую зависит от емкости используемых конденсаторов. Кроме того, это можно сделать по специальной таблице. При недостатке емкости двигатель будет терять свою мощность, а при ее избытке наступит перегрев от чрезмерного тока. Если конденсатор выбран правильно, то двигатель будет работать нормально, без рывков и посторонних шумов. Более точно подбираем устройство путем расчетов, выполняемых по специальным формулам.

Расчет емкости

Емкость конденсатора для электродвигателя рассчитывается исходя из схемы соединения обмоток – звездой или треугольником.

В обоих случаях применяется общая расчетная формула: Сраб = к х Iф/Uсети, к которой все параметры имеют следующие обозначения:

  • к – является специальным коэффициентом. Его значение составляет 2800 для схемы «звезда» и 4800 для схемы «треугольник».
  • Iф – номинальный ток статора, указанный на информационной табличке. При невозможности прочтения, выполняются измерения с помощью специальных измерительных клещей.
  • Uсети – напряжение питающей сети, величиной в 220 вольт.

Подставив все необходимые значения, можно легко рассчитать, какая емкость будет у рабочего конденсатора (мкФ). Во время расчетов необходимо учитывать ток, поступающий к фазной обмотке статора. Он не должен превышать номинальное значение, точно так же, как нагрузка двигателя с конденсатором должна быть не выше 60-80% номинальной мощности, обозначенной на информационной табличке.

Как подключить пусковой и рабочий конденсаторы

На рисунке указана простейшая схема подключения пускового и рабочего элементов. Первый из них устанавливается сверху, а второй – снизу. Одновременно к двигателю подключается кнопка включения и выключения. Самое главное – внимательно разобраться с проводами, чтобы не перепутать концы.

Данная схема позволяет выполнить предварительную проверку с неточной прикидкой. Она же используется и после окончательного выбора наиболее оптимального значения.

Такой подбор осуществляется экспериментальным путем с использованием нескольких конденсаторов разной емкости. При параллельном подключении их суммарная мощность будет увеличиваться. В это время нужно контролировать работу двигателя. Если работа устойчивая и ровная, в этом случае можно покупать конденсатор с емкостью, равной сумме емкостей проверочных элементов.

Пусковые конденсаторы двигателя

– Caldwell Electric

Пусковые конденсаторы

используются для увеличения пускового момента однофазных электродвигателей за счет увеличения тока через пусковые обмотки во время запуска. Обычно они остаются в цепи всего несколько секунд, прежде чем отключатся центробежным или электронным переключателем внутри двигателя. Если ваш однофазный двигатель не запускается, очень часто пусковой конденсатор (если он есть) может быть неисправен. Это типичный вид отказа однофазных двигателей.

Однофазный двигатель обычно имеет как пусковые, так и рабочие конденсаторы. Рабочие конденсаторы имеют меньшую емкость, чем пусковой конденсатор, и предназначены для непрерывной работы, поскольку они все время остаются в цепи. Важно никогда не использовать пусковой конденсатор вместо рабочего конденсатора, потому что пусковые конденсаторы не предназначены для непрерывной работы.

Caldwell Electric может диагностировать проблемы электродвигателя и предложить решения для ремонта или замены.Пусковые конденсаторы также можно приобрести прямо на нашем веб-сайте на этой странице.

Выбор пускового конденсатора

Двумя наиболее важными показателями при замене конденсатора являются емкость и номинальное напряжение. Физический размер – третий критерий.

  • Емкость: Для электродвигателей это измеряется в мкФ. Обычно печатается на конденсаторе в виде числа или диапазона чисел, за которым следуют буквы MFD или мкФ. Заменяемый конденсатор должен почти точно соответствовать первоначальной емкости.
  • Номинальное напряжение: Запасной конденсатор должен иметь номинальное напряжение , по крайней мере, на больше, чем у исходного конденсатора. Это нормально и даже лучше, если запасной конденсатор будет иметь на более высокое номинальное напряжение , чем исходный. Однако более высокое номинальное напряжение обычно приводит к образованию конденсатора большой емкости. Так что размер также следует учитывать.
  • Размер: Физический размер заменяемого конденсатора должен быть таким, чтобы он мог поместиться в корпус конденсатора двигателя.Обычно увеличение емкости или напряжения приводит к увеличению емкости конденсатора.

Пусковые и рабочие конденсаторы двигателя.

ГЛАВНАЯ> РЕСУРСЫ> Конденсаторы запуска и работы двигателя

Что такое конденсаторы двигателя?

Конденсатор двигателя – это особый тип конденсатора, который работает вместе с асинхронными двигателями переменного тока. эти конденсаторы отвечают за запуск двигателей переменного тока или питание их для поддержания их работы.Конденсаторы двигателя доступны в трех различных типах: пусковой конденсатор, Рабочий конденсатор и двойной рабочий конденсатор. Каждый тип имеет собственное приложение, для которого он используется.

Пусковой конденсатор, подключенный к двигателю переменного тока, посылает на двигатель толчок, чтобы запустить его. Затем рабочий конденсатор, подключенный к двигателю переменного тока, посылает регулярные серии толчков, которые поддерживают двигатель в рабочем состоянии.Между тем, двойной рабочий конденсатор отвечает за питание двух отдельных двигателей. Чаще всего конденсаторы двигателя используются в кондиционерах; Эти конденсаторы работают вместе с тремя различными двигателями: двигателем компрессора, двигателем вентилятора и двигателем вентилятора.

К популярным производителям относятся:

  • Genteq
  • Aerovox
  • CDE
  • Barker Microfarads Inc.(ИМТ)
Схема конденсатора двигателя

Пусковые конденсаторы

Пусковые конденсаторы отвечают за увеличение пускового момента двигателя переменного тока, который, в свою очередь, быстро включает и выключает двигатель переменного тока. Пусковые конденсаторы остаются в цепи достаточно долго, чтобы двигатель достиг определенной скорости (обычно 75% полной мощности), а затем вынимается из цепи центробежным выключателем.После запуска электродвигатели переменного тока более эффективно работают с рабочими конденсаторами.

Пусковые конденсаторы представляют собой электрохимические устройства, состоящие из компактно намотанной алюминиевой фольги, разделенных слоями бумаги, которые пропитаны проводящим электролитом. Травление фольги перед формованием и намоткой увеличивает как эффективную площадь поверхности фольги, так и емкость на единицу объема готового конденсатора.Вся сборка помещена в корпус из литого пластика, устойчивого к воздействию влаги и масел. Пусковые конденсаторы рассчитаны на работу при температуре окружающей среды от -40 ° C до + 65 ° C и при частоте от 50 Гц до 60 Гц (применение на более высоких частотах не рекомендуется).

Пусковые конденсаторы имеют фиксированную емкость и напряжение. Обычно они имеют диапазон емкости выше 70 мкФ.
Наиболее распространенные напряжения:

Примечание. Любой пусковой конденсатор номиналом более 20 мкФ представляет собой неполяризованный алюминиевый электролитический конденсатор с не твердым электролитом.Это означает, что это применимо только для материнского использования.

Рабочие конденсаторы

Для работы многих однофазных двигателей переменного тока необходимо вращающееся магнитное поле. Рабочий конденсатор отвечает за питание второй фазной обмотки (вспомогательной катушки) в двигателе переменного тока, что, в свою очередь, создает вращающееся магнитное поле, которое поддерживает работу двигателя.

Рабочие конденсаторы предназначены для непрерывного использования при работающем двигателе переменного тока, в отличие от пусковых конденсаторов, которые включены в цепь только на короткое время, чтобы запустить двигатель. Вот почему полимерные конденсаторы с низкими потерями используются в качестве рабочих конденсаторов из-за более длительного срока службы и меньших потерь тока, в отличие от электролитических конденсаторов, которые идеально подходят для кратковременного использования.

Рабочие конденсаторы бывают двух разных типов: мокрого и сухого. Конденсатор для влажного режима работы заполнен жидкостью, предотвращающей перегрев конденсатора. Сухой стиль имеет тот же диэлектрик, но он не заполнен жидкостью, что делает его вес значительно меньше, чем мокрый. В настоящее время большинство рабочих конденсаторов поставляются с пленочным полипропиленовым или полиэфирным диэлектриком.

Рабочие конденсаторы имеют фиксированные емкость и напряжение. Емкость составляет от 1,5 мкФ до 100 мкФ.
Наиболее распространенные напряжения:

Конденсаторы двойного действия

Конденсаторы двойного хода – это рабочие конденсаторы, которые могут питать два электродвигателя вместо одного.Этот конденсатор в основном экономит ваше пространство при его использовании, поскольку он объединяет два конденсатора в одном корпусе. Конденсаторы двойного хода обычно имеют не менее трех выводов или клемм, обозначенных буквами «C», «FAN» и «HERM».

  • C оммон
  • ВЕНТИЛЯТОР
  • HERM герметичный компрессор

Они рассчитаны на два значения емкости, что позволяет использовать конденсатор в двух разных приложениях одновременно.Например, 20 мкФ + 5 мкФ при 370 В переменного тока. Конденсаторы двойного хода часто встречаются в кондиционерах. Они используются для подачи питания как на двигатель вентилятора, так и на двигатель компрессора.

Ресурсы

Конденсаторы запуска / работы / двойной работы двигателя можно найти в больших вентиляторах, тепловых печах с принудительной подачей воздуха, кондиционерах, воротах с электроприводом и водяных насосах для гидромассажных ванн / джакузи.

Щелкните здесь, чтобы просмотреть наш перечень конденсаторов Motor Run .
Щелкните здесь, чтобы просмотреть наш перечень конденсаторов Motor Start . Асинхронный двигатель с конденсаторным пуском

– характеристика его фазовой диаграммы и применение

Двигатели с конденсаторным пуском – это однофазные асинхронные двигатели, в которых во вспомогательной обмотке используется конденсатор для увеличения разности фаз между током в основной и вспомогательной обмотках.Само название «конденсатор запускает» показывает, что в двигателе для запуска используется конденсатор. На рисунке ниже показана схема подключения двигателя с конденсаторным пуском.

Состав:

Конденсаторный пусковой двигатель имеет ротор с сепаратором и две обмотки на статоре. Они известны как основная обмотка и вспомогательная или пусковая обмотка. Две обмотки разнесены на 90 градусов. Конденсатор C S включен последовательно с пусковой обмоткой.Центробежный выключатель S C также подключен к цепи.


Диаграмма Phasor двигателя конденсаторного пуска показана ниже:

I M – это ток в основной обмотке, который отстает от вспомогательного тока I A на 90 градусов, как показано на векторной диаграмме выше. Таким образом, однофазный ток питания разделяется на две фазы. Две обмотки электрически смещены друг от друга на 90 градусов, а их MMF равны по величине, но разнесены на 90 градусов во временной фазе.

Двигатель действует как сбалансированный двухфазный двигатель. Когда двигатель приближается к своей номинальной скорости, вспомогательная обмотка и пусковой конденсатор автоматически отключаются центробежным переключателем, установленным на валу двигателя.

Характеристики конденсаторного пускового двигателя

Конденсаторный пусковой двигатель развивает гораздо более высокий пусковой момент, примерно в 3–4,5 раза превышающий момент полной нагрузки. Для получения высокого пускового момента необходимы два условия.Они следующие: –

  • Емкость пускового конденсатора должна быть большой.
  • Клапан сопротивления пусковой обмотки должен быть низким.

Электролитические конденсаторы порядка 250 мкФ используются из-за высокого номинального значения Var, необходимого для конденсатора.

Характеристика крутящего момента и скорости вращения двигателя показана ниже:

Характеристика показывает, что пусковой момент высокий. Стоимость этого двигателя больше по сравнению с двигателем с расщепленной фазой из-за дополнительной стоимости конденсатора.Конденсаторный пуск двигателя можно реверсировать, сначала приведя двигатель в состояние покоя, а затем поменяв местами соединения одной из обмоток.

Применение конденсаторного пускового двигателя

Различные применения двигателя следующие:

  • Эти двигатели используются для нагрузок с большей инерцией, когда требуется частый запуск.
  • Используется в насосах и компрессорах
  • Используется в компрессорах холодильников и кондиционеров.
  • Они также используются для конвейеров и станков.

Это все о конденсаторном пусковом двигателе.

Асинхронный двигатель с конденсаторным пуском

: конструкция и принципы работы

Асинхронный двигатель – это электродвигатель переменного тока, в котором электрический ток в роторе, необходимый для создания крутящего момента, получается за счет электромагнитной индукции из магнитного поля обмотки статора. В этой статье мы более подробно рассмотрим тип однофазного асинхронного двигателя, который называется асинхронным двигателем с конденсаторным пуском.Прочтите этот новый блог в Liquip, чтобы узнать, что такое асинхронный двигатель с конденсаторным пуском и принцип его работы.

Что такое асинхронный двигатель с конденсаторным пуском?

Двигатели с конденсаторным пуском – это однофазные асинхронные двигатели, в которых в цепи вспомогательной обмотки используется конденсатор для увеличения разности фаз между током в основной и вспомогательной обмотках. Название предполагает, что в двигателе для запуска используется конденсатор.

Конструкция асинхронного двигателя с конденсаторным пуском

Двигатель с конденсаторным пуском имеет ротор с сепаратором и две обмотки на статоре.Они известны как основная обмотка и вспомогательная или пусковая обмотка. Две обмотки разнесены на 90 градусов. Конденсатор CS включен последовательно с пусковой обмоткой. В цепь также включен центробежный выключатель SC.

Схема подключения асинхронного двигателя конденсаторного пуска показана на рисунке ниже.

Принцип работы асинхронного двигателя с конденсаторным пуском

  • Когда обмотки статора получают питание от однофазного источника питания, основная обмотка и пусковая обмотка проходят два разных тока.Между двумя токами существует разность фаз во времени 90 ° и пространственная разница 90 °. Эти два тока создают вращающееся магнитное поле, запускающее двигатель.
  • При пуске двигателя основная и вспомогательная обмотки включаются параллельно. Пусковой конденсатор остается в цепи достаточно долго, чтобы быстро довести двигатель до заданной скорости, которая обычно составляет от 70 до 80% от полной скорости.
  • Затем вспомогательная обмотка отключается от источника питания, часто центробежным переключателем, и двигатель остается запитанным от одной обмотки, создавая пульсирующее магнитное поле.В этом смысле вспомогательную обмотку в этой конструкции можно рассматривать как пусковую, поскольку она используется только при запуске двигателя.
  • Обратите внимание, что двигатель не будет работать должным образом, если центробежный выключатель сломан. Если переключатель всегда разомкнут, пусковой конденсатор не является частью цепи, поэтому двигатель не запускается. Если переключатель всегда замкнут, пусковой конденсатор всегда находится в цепи, поэтому обмотки двигателя, скорее всего, сгорят. Если двигатель не запускается, проблема скорее в конденсаторе, чем в переключателе.

Конденсаторный асинхронный двигатель с пуском Характеристики

  • Пусковая обмотка конденсаторного двигателя нагревается менее быстро и хорошо подходит для применений, требующих частых или длительных периодов пуска.
  • Мощность таких двигателей составляет от 120 Вт до 7-5 кВт.
  • Конденсаторный пусковой двигатель развивает гораздо более высокий пусковой момент, примерно в 3–4,5 раза превышающий момент полной нагрузки. Для получения высокого пускового момента важны два следующих условия:
  • Емкость пускового конденсатора должна быть большой.
  • Клапан сопротивления пусковой обмотки должен быть низким.

Преимущества асинхронных двигателей с конденсаторным запуском

Ниже перечислены некоторые преимущества асинхронных двигателей с конденсаторным запуском.

  • Из-за высокого пускового момента и низкого пускового тока асинхронные двигатели с конденсаторным пуском находят широкое применение.
  • Конденсатор включен последовательно с пусковой цепью, поэтому он создает больший пусковой момент, обычно от 200 до 400% от номинальной нагрузки.А пусковой ток, обычно от 450 до 575% от номинального, намного ниже, чем у типов с расщепленной фазой, из-за большего провода в пусковой цепи. Это обеспечивает более высокую продолжительность цикла и надежную тепловую защиту.
  • Пусковой конденсатор обычно имеет большую емкость, чем тип асинхронного двигателя рабочего конденсатора, конденсатор емкостью от 7 до 9 мкФ, что улучшает характеристики двигателя после его запуска.
  • Эта конфигурация двигателя работает настолько хорошо, что доступна в нескольких вариантах мощности (несколько киловатт).

Применение асинхронного двигателя с конденсаторным запуском

  • Эти двигатели используются для нагрузок с большей инерцией, где требуется частый запуск.
  • Они используются в широком спектре приложений с ременным приводом, таких как небольшие конвейеры, большие воздуходувки и станки.
  • Применяются в насосах и компрессорах.
  • Применяются в компрессорах холодильников и кондиционеров.
  • Они также используются во многих приложениях с прямым приводом или редуктором.

Теперь, когда вы знаете ответ на вопрос, что такое индукционный двигатель с конденсаторным пуском, как насчет того, чтобы поделиться с нами своими мыслями и комментариями по этому поводу? Прокомментируйте ниже и дайте нам знать, что вы думаете! А если у вас есть какие-либо вопросы о капиллярных трубках, зарегистрируйтесь в Linquip прямо сейчас, и мы поможем вам в мгновение ока!

Объяснение пускового и рабочего конденсатора – HVAC How To


Что такое пусковые конденсаторы?
Двигатели, используемые в системах отопления, вентиляции и кондиционирования воздуха, такие как двигатели вентилятора конденсатора или двигатели вентилятора нагнетателя, иногда нуждаются в помощи, чтобы начать движение и продолжать работать в стабильном темпе, без резких скачков вверх и вниз.

Для этого в установках HVAC используются так называемые пусковые и пусковые конденсаторы.

  • Пусковой конденсатор имеет дополнительную плату для запуска двигателя.
  • Рабочий конденсатор обеспечивает плавную работу двигателя без скачков вверх и вниз.
  • Не все двигатели имеют пусковой или рабочий конденсатор, некоторые могут запускаться и работать сами по себе.




    Конденсаторы в HVAC могут быть разделены двумя конденсаторами или могут быть в одном корпусе.

    Когда они разделены, их просто называют «одиночными», а когда они объединены в один пакет, они называются «двойными раундами».

    Вот двойной круглый конденсатор



    Вот одинарный конденсатор

    Двойные круглые конденсаторы – это просто способ, которым инженеры пытаются сэкономить на месте и стоимости.

    Они могли бы разместить два отдельных конденсатора в блоке HVAC, но объединить их в один корпус.

    Двойной конденсатор чаще всего имеет одну сторону для запуска компрессора (Herm), а другую – для запуска двигателя вентилятора конденсации.Третья одиночная ветвь сдвоенного конденсатора является общей общей ветвью.

    Как они работают в системе HVAC?
    Пусковой или рабочий конденсатор можно объединить в один конденсатор, называемый двойным конденсатором, с тремя выводами, но его можно разделить между двумя отдельными конденсаторами. Пусковой конденсатор дает двигателю вентилятора крутящий момент, необходимый для начала вращения, а затем останавливается; в то время как рабочий конденсатор продолжает давать двигателю дополнительный крутящий момент, когда это необходимо.




    При выходе из строя пускового конденсатора двигатель, скорее всего, не включится.Если рабочий конденсатор выходит из строя, двигатель может включиться, но рабочая сила тока будет выше, чем обычно, что приведет к перегреву двигателя и короткому сроку службы.

    После замены неисправного двигателя вентилятора конденсатора необходимо всегда устанавливать новый пусковой конденсатор.

    Двойной конденсатор имеет три подключения: HERM, FAN и COM.

  • HERM, подключается к герметичному компрессору.
  • FAN, подключается к двигателю вентилятора конденсатора.
  • COM, подключается к контактору и обеспечивает питание конденсатора.
  • Если устройство имеет два конденсатора, то один из них является рабочим конденсатором, а другой – пусковым. Имейте в виду, что компрессору также часто требуется конденсатор, который будет HERM (компрессор).

    Покупка нового конденсатора HVAC
    Новый конденсатор всегда следует устанавливать вместе с новым двигателем. Конденсатор можно купить в компании-поставщике систем отопления, вентиляции и кондиционирования воздуха, обычно их по крайней мере несколько даже в небольшом городке, также хорошее место для поиска – онлайн-магазин Amazon.

    Вот два обычных конденсатора, один слева – это двойной круглый конденсатор, а тот, что справа, – это конденсатор Run Oval.

    Двойной конденсатор – это не что иное, как два конденсатора в одном корпусе; в то время как овал хода представляет собой один конденсатор, а в системе отопления, вентиляции и кондиционирования воздуха обычно их два.

    Конденсаторы измеряются микрофарадами, иногда обозначаемыми буквами uf и Voltage. В любом блоке HVAC конденсатор должен соответствовать двигателю.

    Напряжение может быть выше, если необходимо, но никогда не понижаться, в то время как MFD (uf) всегда должен быть одинаковым.На картинке это двойной рабочий конденсатор, показывающий 55 + 5 MFD (мкФ) 440 В переменного тока. Большее число 55 MFD соответствует компрессору, а меньшее число 5 MFD (uf) соответствует двигателю вентилятора. Меньшее число всегда будет для двигателя вентилятора. Затем напряжение 440 Вольт переменного тока.

    (+ -5 после MFD показывает, насколько допустимый допуск конденсатора будет повышаться или понижаться.)

    Чтобы заказать замену для этого конденсатора, это будет 55 + 5 MFD (мкФ) и двойной рабочий конденсатор 440 В переменного тока.

    Пример сдвоенного конденсатора HVAC на Amazon
    MAXRUN 55 + 5 MFD uf 370 или 440 VAC Конденсатор двойного действия с круглым двигателем для конденсатора кондиционера переменного тока – 55/5 uf MFD 440V с прямым охлаждением или тепловым насосом – будет работать двигатель переменного тока и вентилятор – 1 год гарантии


    Тестирование конденсатора HVAC
    Тестирование конденсатора HVAC выполняется с помощью мультиметра HVAC, мультиметр должен иметь кабель для считывания диапазона, который может иметь конденсатор HVAC. Многие небольшие электронные счетчики не имеют этого диапазона.

    Здесь я использую мультиметр Fieldpeice HS36 с зажимом усилителя.

    Этот тест проводится на двойном рабочем конденсаторе 55 + 5 MFD (мкФ). Мультиметр находится на Фарадах, а провода на C и FAN (положительный и отрицательный не имеют значения). Нижнее число соответствует двигателю вентилятора, который рассчитан на 5 MFD (мкФ), и он читается как 5,3 MFD (мкФ), так что это хорошо. Также можно прочитать выводы C к Herm, которые предназначены для компрессора.

    Чтобы проверить рабочий овальный конденсатор, просто коснитесь двух выводов.Он показывает 4,5 MFD (мкФ) и рассчитан на 5 MFD (мкФ), так что он плохой и требует замены.



    Как заменить пусковой конденсатор
    При установке нового двигателя всегда следует устанавливать новый конденсатор вентилятора. Всегда полезно сфотографировать или записать расцветку проводов и соединения.

    1. Выключите питание блока HVAC и убедитесь, что оно отключено с помощью измерителя.
    2. Найдите боковую панель, где электричество подводится к устройству, и снимите панель.
    3. Найдите конденсатор статического хода, если это конденсатор двойного хода, то он будет только один. Если их два, то нужно будет заменить только конденсатор двигателя вентилятора.
    4. Проверьте MFD и напряжения, затем подключите новые соединения от старого конденсатора к новому конденсатору по одной ножке за раз, чтобы убедиться, что соединения правильные.
    5. (Если у вас два конденсатора, один предназначен для компрессора, а другой – для двигателя вентилятора.)





    Основная причина неисправностей однофазных двигателей

    Большинство проблем с однофазными двигателями связаны с центробежным переключателем, термовыключателем или конденсатором (-ами).Если проблема в центробежном выключателе, термовыключателе или конденсаторе, двигатель обычно обслуживается и ремонтируется. Однако, если двигателю более 10 лет и он менее 1 л.с., двигатель обычно заменяют. Если мощность мотора меньше 1/8 л.с., его почти всегда заменяют.

    Устранение неисправностей однофазных (однофазных) двигателей

    Двухфазный двигатель имеет пусковую и рабочую обмотки. Пусковая обмотка автоматически снимается центробежным переключателем при разгоне двигателя.Некоторые электродвигатели с расщепленной фазой также включают термовыключатель, который автоматически выключает электродвигатель при его перегреве. Термовыключатели могут иметь ручной или автоматический сброс. Следует проявлять осторожность с любым двигателем, который имеет автоматический сброс, поскольку двигатель может автоматически перезапуститься в любое время.

    Для диагностики двигателя с расщепленной фазой выполните следующую процедуру:

    1. Отключите питание двигателя. Осмотрите мотор. Замените двигатель, если он сгорел, вал заклинило или есть признаки повреждения.
    2. Убедитесь, что двигатель управляется термовыключателем. Если термовыключатель ручной, сбросьте термовыключатель и включите двигатель.
    3. Если двигатель не запускается, используйте вольтметр, например промышленный мультиметр Fluke 87V, для проверки напряжения на клеммах двигателя. Напряжение должно быть в пределах 10% от указанного напряжения двигателя. Если напряжение неправильное, устраните неисправность цепи, ведущей к двигателю. Если напряжение в норме, выключите двигатель, чтобы его можно было проверить.
    4. Выключите ручку предохранительного выключателя или комбинированного стартера. Заблокируйте и пометьте пусковой механизм в соответствии с политикой компании.
    5. При выключенном питании подключите Fluke 87V к тем же клеммам двигателя, от которых были отключены подводящие провода питания. Омметр покажет сопротивление пусковой и ходовой обмоток. Поскольку обмотки параллельны, их общее сопротивление меньше, чем сопротивление каждой обмотки в отдельности. Если счетчик показывает ноль, короткое замыкание.Если счетчик показывает бесконечность, имеется обрыв цепи. В любом случае двигатель следует заменить. Примечание. Размер двигателя слишком мал для того, чтобы его ремонт был рентабельным.
    6. Осмотрите центробежный выключатель на предмет признаков перегорания или поломки пружин. Если присутствуют какие-либо очевидные признаки проблем, отремонтируйте или замените переключатель. Если нет, проверьте переключатель с помощью омметра.

    Вручную задействуйте центробежный выключатель. (Концевой раструб на стороне переключателя, возможно, придется снять.) Если мотор исправен, сопротивление на омметре уменьшится. Если сопротивление не меняется, проблема существует. Продолжайте проверять, чтобы определить проблему.

    Устранение неисправностей конденсаторных двигателей

    Конденсаторный двигатель – это двигатель с расщепленной фазой с добавлением одного или двух конденсаторов. Конденсаторы придают двигателю больший пусковой и / или рабочий крутящий момент. Устранение неисправностей конденсаторных двигателей похоже на поиск неисправностей в двигателях с расщепленной фазой. Единственное дополнительное устройство, которое следует учитывать, – это конденсатор.

    Конденсаторы имеют ограниченный срок службы и часто являются проблемой конденсаторных двигателей. Конденсаторы могут иметь короткое замыкание, разрыв цепи или могут выйти из строя до такой степени, что их необходимо заменить. Износ может также изменить емкость конденсатора, что может вызвать дополнительные проблемы. При коротком замыкании конденсатора обмотка в двигателе может перегореть. Когда конденсатор выходит из строя или открывается, двигатель имеет плохой пусковой момент. Низкий пусковой крутящий момент может помешать запуску двигателя, что обычно вызывает перегрузку.

    Все конденсаторы имеют две проводящие поверхности, разделенные диэлектрическим материалом. Диэлектрический материал – это среда, в которой электрическое поле поддерживается при небольшой подаче внешней энергии или вообще без нее. Это тип материала, используемого для изоляции проводящих поверхностей конденсатора. Конденсаторы бывают масляные или электролитические. Масляные конденсаторы залиты маслом и опломбированы в металлическую тару. Масло служит диэлектрическим материалом.

    Электролитические конденсаторы используются в двигателях чаще, чем масляные.Электролитические конденсаторы образуются путем наматывания двух листов алюминиевой фольги, разделенных кусками тонкой бумаги, пропитанной электролитом. Электролит – это проводящая среда, в которой ток происходит за счет миграции ионов. Электролит используется в качестве диэлектрического материала. Алюминиевая фольга и электролит закрыты картонной или алюминиевой крышкой. Предусмотрено вентиляционное отверстие для предотвращения возможного взрыва в случае короткого замыкания или перегрева конденсатора.

    Конденсаторы переменного тока

    используются с конденсаторными двигателями.Конденсаторы, предназначенные для подключения к сети переменного тока, не имеют полярности.

    Для диагностики конденсаторного двигателя выполните следующую процедуру:

    1. Выключите ручку предохранительного выключателя или комбинированного стартера. Заблокируйте и пометьте пусковой механизм в соответствии с политикой компании.
    2. Используя Fluke 87V, измерьте напряжение на клеммах двигателя, чтобы убедиться, что питание отключено.
    3. Конденсаторы расположены на внешней раме двигателя. Снимаем крышку конденсатора.Внимание: хороший конденсатор будет держать заряд даже при отключении питания.
    4. Осмотрите конденсатор на предмет утечки, трещин или вздутия. Замените конденсатор, если он есть.
    5. Вынуть конденсатор из цепи и разрядить. Чтобы безопасно разрядить конденсатор, поместите резистор 20 000 Ом, 2 Вт на клеммы на пять секунд.
    6. После того, как конденсатор разрядится, подключите провода Fluke 87V к клеммам конденсатора. Fluke 87V покажет общее состояние конденсатора.Конденсатор исправен, закорочен или разомкнут.

    Настройте Fluke 87V на измерение емкости. Считываемое значение емкости должно находиться в пределах ± 20% от значения, указанного на этикетке конденсатора.

    Связанные ресурсы

    Типы двигателей | Бэй Мотор Продактс

    Двигатель с экранированными полюсами

    Двигатели с экранированными полюсами являются оригинальным типом однофазных асинхронных двигателей переменного тока. Также называется однофазным асинхронным двигателем, просто подключив его к одной линии напряжения, и для его вращения требуется внешний конденсатор.Различные типы однофазных асинхронных двигателей различаются в зависимости от метода их запуска. Четыре основных типа – это разделенная фаза, конденсаторный запуск, постоянный разделенный конденсатор и конденсаторный запуск / работа конденсатора.

    Двигатель с расщепленной фазой

    Двигатель с расщепленной фазой использует переключающее устройство для отключения пусковой обмотки, когда двигатель достигает 75% своей номинальной скорости. Хотя этот тип имеет простую конструкцию, что делает его менее дорогим для коммерческого использования, он также имеет низкие пусковые моменты и высокие пусковые токи.

    Конденсаторный пусковой двигатель

    Конденсаторный пусковой двигатель – это конденсаторный двигатель с расщепленной фазой, в котором конденсатор включен последовательно с пусковой обмоткой для создания большего пускового момента. Этот двигатель более дорогой из-за требуемых коммутационных и конденсаторных компонентов.

    Постоянный разделенный конденсатор

    Двигатель с постоянным разделенным конденсатором не имеет пускового переключателя. Для этого типа конденсатор постоянно подключен к обмотке пускателя. Поскольку для этого требуется конденсатор для непрерывного использования, он не обеспечивает пусковую мощность, поэтому пусковые моменты обычно малы.Эти двигатели не будут работать при высоких пусковых нагрузках. Однако они имеют низкие пусковые токи, более тихую работу и более высокий срок службы / надежность, что делает их хорошим выбором для высоких циклов. Они также являются наиболее надежными конденсаторными двигателями из-за отсутствия пускового переключателя. Различные конструкции обеспечивают более высокий КПД и коэффициент мощности при номинальных нагрузках.

    Конденсаторный пуск / Конденсаторный двигатель

    Конденсаторный пусковой / конденсаторный двигатель имеет как пусковой, так и пусковой конденсатор в цепи.После достижения полного пуска пусковой конденсатор отключается. Этот тип двигателя имеет более высокий пусковой ток, меньшие токи нагрузки и более высокий КПД. Недостатком является стоимость двух конденсаторов и переключающего устройства. Надежность также играет важную роль в механизме переключения.

    Технология

    Для сравнения, эти типы асинхронных двигателей с разделенным сопротивлением обеспечивают пусковой крутящий момент от низкого до среднего, и это ограничивает их применениями с низким энергопотреблением, для которых они лучше всего подходят.В этих двигателях используется одна вспомогательная обмотка меньшего размера, чем обычно, что создает более низкую скорость индукции и гораздо более высокое сопротивление, чем у других типов. Такие простые модели можно использовать только при небольшой нагрузке и небольшом пусковом приводе.

    Для некоторых приложений, таких как небольшие вентиляторы, шлифовальные машины и нагреватели, не требуются более высокие пусковые моменты, но в большинстве случаев, чем больше крутящий момент при запуске двигателя, тем большую нагрузку можно приложить к машине. Однофазный двигатель с высоким пусковым крутящим моментом часто бывает дороже, чем более простые двигатели с разделенной индукцией.Однако разница в мощности может окупиться для разных промышленных нужд. От однофазного двигателя с высоким пусковым моментом можно ожидать другого уровня производительности, это может сэкономить время и энергию.

    Переменные токи, протекающие в однофазном двигателе, одновременно достигают своих пиковых значений; это составляет одну единственную фазу. В трехфазных системах пиковые значения тока достигаются последовательно, в три отдельных этапа. По сравнению с трехфазными системами, эти двигатели не обладают таким же высоким КПД, но могут работать бесконечно долго при минимальном техническом обслуживании.

    Электродвигатели асинхронные

    имеют разные классификации в зависимости от источника электроэнергии и типа конструкции. Двигатели асинхронного типа, также называемые асинхронными двигателями, работают с использованием переменного тока (AC), создаваемого электромагнитной индукцией, в отличие от коммутаторов, обычно используемых в двигателях переменного тока других типов. Асинхронные двигатели используются в промышленности, а также в стандартных устройствах, таких как холодильники, стиральные машины, посудомоечные машины и сушилки для одежды.

    Электродвигатели индукционного типа были первоначальным двигателем переменного тока, который должен был быть создан; Никола Тесла придумал прототип в 1883 году. Эти асинхронные двигатели имеют очень простую конструкцию и управление по сравнению с современными двигателями переменного тока, но они по-прежнему очень прочные, тихие и долговечные. Асинхронные двигатели отличаются тем, что они используют индуцированный ток в роторе для создания вращательного движения.

    Асинхронные двигатели

    состоят из двух простых частей: статора с медной обмоткой и узла якоря или ротора.Обмотки статора удерживаются в пазах вокруг статора с соблюдением баланса между количеством северных и южных полюсов. Сборка ротора производится в нескольких вариантах: роторы с короткозамкнутым ротором, роторы с контактным кольцом и роторы со сплошным сердечником.

    Добавить комментарий

    Ваш адрес email не будет опубликован.