Теплопроводность у меди: Свойства меди: плотность, теплоемкость, теплопроводность

alexxlab | 21.05.2019 | 0 | Разное

Содержание

Теплопроводность меди – как влияет на свойства меди? + Видео

Высокая теплопроводность меди наряду с другими замечательными свойствами определила этому металлу значимое место в истории развития человеческой цивилизации. Изделия из меди и ее сплавов используются практически во всех сферах нашей жизни.  

1 Медь – коротко про теплопроводность

Теплопроводностью называют процесс переноса энергии частиц (электронов, атомов, молекул) более нагретых участков тела к частицам менее нагретых его участков. Такой теплообмен приводит к выравниванию температуры. Вдоль тела переносится только энергия, вещество не перемещается. Характеристикой способности проводить тепло является коэффициент теплопроводности, численно равный количеству теплоты, которая проходит через материал площадью 1 м2, толщиной 1 м, за 1 секунду при единичном градиенте температуры.

Медь – коротко про теплопроводность

Коэффициент теплопроводности меди при температуре 20–100 °С составляет 394 Вт/(м*К) – выше только у серебра. Стальной прокат уступает меди по этому показателю почти в 9 раз, а железо – в 6. Различные примеси по-разному влияют на физические свойства металлов. У меди скорость передачи тепла снижается при добавлении в материал или попадании в результате технологического процесса таких веществ, как:

  • алюминий;
  • железо;
  • кислород;
  • мышьяк;
  • сурьма;
  • сера;
  • селен;
  • фосфор.

Высокая теплопроводность характеризуется быстрым распространением энергии нагрева по всему объему предмета. Эта способность обеспечила меди широкое применение в любых системах теплообмена. Ее используют при изготовлении трубок и радиаторов холодильников, кондиционеров, вакуумных установок, автомашин для отвода избыточного тепла охлаждающей жидкости. В отопительных приборах подобные изделия из меди служат для обогрева.

Медь – коротко про теплопроводность фото

Способность меди проводить тепло снижается при нагреве. Значения коэффициента теплопроводности меди в воздухе зависит от температуры последнего, которая влияет на теплоотдачу (охлаждение). Чем выше температура окружающей среды, тем медленнее остывает металл и ниже его теплопроводность. Поэтому во всех теплообменниках используют принудительный обдув вентилятором – это повышает эффективность работы устройств и одновременно поддерживает тепловую проводимость на оптимальном уровне.

2 Теплопроводность алюминия и меди – какой металл лучше?

Теплопроводность алюминия и меди различна – у первого она меньше, чем у второго, в 1,5 раза. У алюминия этот параметр составляет 202–236 Вт/(м

*К) и является достаточно высоким по сравнению с другими металлами, но ниже, чем у золота, меди, серебра. Область применения алюминия и меди, где требуется высокая теплопроводность, зависит от ряда других свойств этих материалов.

Теплопроводность алюминия и меди – какой металл лучше?

Алюминий не уступает меди по антикоррозионным свойствам и превосходит в следующих показателях:

  • плотность (удельный вес) алюминия меньше в 3 раза;
  • стоимость – ниже в 3,5 раза.

Аналогичное изделие, но выполненное из алюминия, значительно легче, чем из меди. Так как по весу металла требуется меньше в 3 раза, а цена его ниже в 3,5 раза, то алюминиевая деталь может быть дешевле примерно в 10 раз. Благодаря этому и высокой теплопроводности алюминий нашел широкое применение при производстве посуды, пищевой фольги для духовок. Так как этот металл мягкий, то в чистом виде не используется – распространены в основном его сплавы (наиболее известный – дюралюминий).

В различных теплообменниках главное – это скорость отдачи избыточной энергии в окружающую среду. Эта задача решается интенсивным обдувом радиатора посредством вентилятора. При этом меньшая теплопроводность алюминия практически не отражается на качестве охлаждения, а оборудование, устройства получаются значительно легче и дешевле (к примеру, компьютерная и бытовая техника). В последнее время в производстве наметилась тенденция к замене в системах кондиционирования медных трубок на алюминиевые.

Теплопроводность алюминия и меди – какой металл лучше? фото

Медь практически незаменима в радиопромышленности, электронике в качестве токопроводящего материала. Благодаря высокой пластичности из нее можно вытягивать проволоку диаметром до 0,005 мм и делать другие очень тонкие токопроводящие соединения, используемые для электронных приборов. Более высокая, чем у алюминия, проводимость обеспечивает минимальные потери и меньший нагрев радиоэлементов. Теплопроводность позволяет эффективно отводить выделяемое при работе тепло на внешние элементы устройств – корпус, подводящие контакты (к примеру, микросхемы, современные микропроцессоры).

Шаблоны из меди используют при сварке, когда необходимо на стальную деталь сделать наплавку нужной формы. Высока теплопроводность не позволит медному шаблону соединиться с приваренным металлом. Алюминий в таких случаях применять нельзя, так как велика вероятность его расплавления или прожига. Медь также используют при сварке угольной дугой – стержень из этого материала служит неплавящимся катодом.

3 Минусы высокой теплопроводности

Низкая теплопроводность во многих случаях является нужным свойством – на этом основана теплоизоляция. Использование медных труб в системах отопления приводит к гораздо большим потерям тепла, чем при применении магистралей и разводок из других материалов. Медные трубопроводы требуют более тщательной теплоизоляции.

У меди высокая теплопроводность, что обуславливает достаточно сложный процесс монтажных и других работ, имеющих свою специфику. Сварка, пайка, резка меди требует более концентрированного нагрева, чем для стали, и зачастую предварительного и сопутствующего подогрева металла.

Минусы высокой теплопроводности

При газовой сварке меди необходимо использование горелок мощностью на 1–2 номера выше, чем для стальных деталей такой же толщины. Если медь толще 8–10 мм, рекомендуется работать с двумя или даже тремя горелками (часто сварку производят одной, а другими осуществляют подогрев). Сварочные работы на переменном токе электродами сопровождаются повышенным разбрызгиванием металла. Резак, достаточный для толщины высокохромистой стали в 300 мм, подойдет для резки латуни, бронзы (сплавы меди) толщиной до 150 мм, а чистой меди всего в 50 мм. Все работы связаны с значительно большими затратами на расходные материалы.

4 Как у меди повысить теплопроводность?

Медь – один из главных компонентов в электронике, используется во всех микросхемах. Она отводит и рассеивает тепло, образующееся при прохождении тока. Ограничение быстродействия компьютеров обусловлено увеличением нагрева процессора и других элементов схем при росте тактовой частоты. Разбиение на несколько ядер, работающих одновременно, и другие способы борьбы с перегревом себя исчерпали. В настоящее время ведутся разработки, направленные на получение проводников с более высокой электропроводимостью и теплопроводностью.

Как у меди повысить теплопроводность?

Открытый недавно учеными графен способен значительно увеличить теплопроводность медных проводников и их возможность к рассеиванию тепла. При проведении эксперимента слой меди покрыли графеном со всех сторон. Это улучшило теплоотдачу проводника на 25 %. Как объяснили ученые, новое вещество меняет структуру передачи тепла и позволяет энергии двигаться в металле свободнее. Изобретение находится на стадии доработки – при эксперименте использовался медный проводник гораздо больших размеров, чем в процессоре.

Теплопроводность меди – две стороны одной медали

Высокая теплопроводность меди наряду с другими замечательными свойствами определила этому металлу значимое место в истории развития человеческой цивилизации. Изделия из меди и ее сплавов используются практически во всех сферах нашей жизни.  

Блок: 1/5 | Кол-во символов: 242
Источник: http://tutmet.ru/koefficient-teploprovodnosti-medi-aluminiya.html

Немного о теплопроводности

Под теплопроводностью в физике понимают перемещение энергии в объекте от более нагретых мельчайших частиц к менее нагретым. Благодаря этому процессу выравнивается температура рассматриваемого предмета в целом. Величина способности проводить тепло характеризуется коэффициентом теплопроводности. Данный параметр равен количеству тепла, которое пропускает через себя материал толщиной 1 метр через площадь поверхности 1 м2 в течение одной секунды при единичной разнице температур.

Материал Коэффициент теплопроводности, Вт/(м*К)
Серебро428
Медь394
Алюминий220
Железо74
Сталь45
Свинец35
Кирпич0,77

Медь обладает коэффициентом теплопроводности 394 Вт/(м*К) при температуре от 20 до 100 °С. Соперничать с ней может только серебро. А у стали и железа этот показатель ниже в 9 и 6 раз соответственно (см. таблицу). Стоит отметить, что теплопроводность изделий, изготовленных из меди, в значительной мере зависит от примесей (впрочем, это касается и других металлов). Например, скорость проводимости тепла снижается, если в медь попадают такие вещества, как:

  • железо;
  • мышьяк;
  • кислород;
  • селен;
  • алюминий;
  • сурьма;
  • фосфор;
  • сера.

Медная проволока

Медная проволока

Если добавить к меди цинк, то получится латунь, у которой коэффициент теплопроводности намного ниже. В то же время добавление других веществ в медь позволяет существенно снизить стоимость готовых изделий и придать им такие характеристики, как прочность и износостойкость. К примеру, для латуни характерны более высокие технологические, механические и антифрикционные свойства.

Поскольку для высокой теплопроводности характерно быстрым распространение энергии нагрева по всему предмету, медь получила широкое применение в системах теплообмена. На данный момент из нее изготавливают радиаторы и трубки для холодильников, вакуумных установок и автомашин для быстрого отвода тепла. Также медные элементы применяют в отопительных установках, но уже для обогрева.

Медный радиатор отопления

Медный радиатор отопления

Чтобы поддерживать теплопроводность металла на высоком уровне (а значит, делать работу устройств из меди максимально эффективной), во всех системах теплообмена используют принудительный обдув вентиляторами. Такое решение вызвано тем, что при повышении температуры среды теплопроводность любого материала существенно понижается, ведь теплоотдача замедляется.

Блок: 2/5 | Кол-во символов: 2339
Источник: http://met-all.org/cvetmet-splavy/med/teploprovodnost-medi-i-ee-splavov.html

Что такое теплопроводность и для чего нужна

Процесс переноса энергии атомов и молекул от горячих предметов к изделиям с холодной температурой, осуществляется при хаотическом перемещении движущихся частиц. Такой обмен тепла зависит от агрегатного состояния металла, через который проходит передача. В зависимости от химического состава материала, теплопроводность будет иметь различные характеристики. Данный процесс называют теплопроводностью, он заключается в передаче атомами и молекулами кинетической энергии, определяющей нагрев металлического изделия при взаимодействии этих частиц, или передается от более теплой части – к той, которая меньше нагрета.

Способность передавать или сохранять тепловую энергию, позволяет использовать свойства металлов для достижения необходимых технических целей в работе различных узлов и агрегатов оборудования, используемого в народном хозяйстве. Примером такого применения может быть паяльник, нагревающийся в средней части и передающий тепло на край рабочего стержня, которым выполняют пайку необходимых элементов. Зная свойства теплопроводности, металлы применяют во всех отраслях промышленности, используя необходимый параметр по назначению.

Блок: 2/7 | Кол-во символов: 1195
Источник: https://prompriem.ru/metally/teploprovodnost.html

2 Теплопроводность алюминия и меди – какой металл лучше?

Теплопроводность алюминия и меди различна – у первого она меньше, чем у второго, в 1,5 раза. У алюминия этот параметр составляет 202–236 Вт/(м*К) и является достаточно высоким по сравнению с другими металлами, но ниже, чем у золота, меди, серебра. Область применения алюминия и меди, где требуется высокая теплопроводность, зависит от ряда других свойств этих материалов.

Теплопроводность алюминия и меди – какой металл лучше?

Алюминий не уступает меди по антикоррозионным свойствам и превосходит в следующих показателях:

  • плотность (удельный вес) алюминия меньше в 3 раза;
  • стоимость – ниже в 3,5 раза.

Аналогичное изделие, но выполненное из алюминия, значительно легче, чем из меди. Так как по весу металла требуется меньше в 3 раза, а цена его ниже в 3,5 раза, то алюминиевая деталь может быть дешевле примерно в 10 раз. Благодаря этому и высокой теплопроводности алюминий нашел широкое применение при производстве посуды, пищевой фольги для духовок. Так как этот металл мягкий, то в чистом виде не используется – распространены в основном его сплавы (наиболее известный – дюралюминий).

В различных теплообменниках главное – это скорость отдачи избыточной энергии в окружающую среду. Эта задача решается интенсивным обдувом радиатора посредством вентилятора. При этом меньшая теплопроводность алюминия практически не отражается на качестве охлаждения, а оборудование, устройства получаются значительно легче и дешевле (к примеру, компьютерная и бытовая техника). В последнее время в производстве наметилась тенденция к замене в системах кондиционирования медных трубок на алюминиевые.

Теплопроводность алюминия и меди – какой металл лучше? фото

Медь практически незаменима в радиопромышленности, электронике в качестве токопроводящего материала. Благодаря высокой пластичности из нее можно вытягивать проволоку диаметром до 0,005 мм и делать другие очень тонкие токопроводящие соединения, используемые для электронных приборов. Более высокая, чем у алюминия, проводимость обеспечивает минимальные потери и меньший нагрев радиоэлементов. Теплопроводность позволяет эффективно отводить выделяемое при работе тепло на внешние элементы устройств – корпус, подводящие контакты (к примеру, микросхемы, современные микропроцессоры).

Шаблоны из меди используют при сварке, когда необходимо на стальную деталь сделать наплавку нужной формы. Высока теплопроводность не позволит медному шаблону соединиться с приваренным металлом. Алюминий в таких случаях применять нельзя, так как велика вероятность его расплавления или прожига. Медь также используют при сварке угольной дугой – стержень из этого материала служит неплавящимся катодом.

Блок: 3/5 | Кол-во символов: 2572
Источник: http://tutmet.ru/koefficient-teploprovodnosti-medi-aluminiya.html

Понятие термического сопротивления и коэффициента теплопроводности

Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.

Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.

Таблица 1

Металл

Коэффициент теплопроводности металлов при температура, °С

— 100

100

300

700

Алюминий

2,45

2,38

2,30

2,26

0,9

Бериллий

4,1

2,3

1,7

1,25

0,9

Ванадий

0,31

0,34

Висмут

0,11

0,08

0,07

0,11

0,15

Вольфрам

2,05

1,90

1,65

1,45

1,2

Гафний

 —

0,22

0,21

Железо

0,94

0,76

0,69

0,55

0,34

Золото

3,3

3,1

3,1

Индий

0,25

Иридий

1,51

1,48

1,43

Кадмий

0,96

0,92

0,90

0,95

0,44 (400°)

Калий

0,99

0,42

0,34

Кальций

0,98

Кобальт

0,69

Литий

0,71

0,73

Магний

1,6

1,5

1,5

1,45

 Медь

4,05

3,85

3,82

3,76

3,50

Молибден

1,4

1,43

 —

1,04 (1000°)

Натрий

1,35

1,35

0,85

0,76

0,60

Никель

0,97

0,91

0,83

0,64

0,66

Ниобий

0,49

0,49

0,51

0,56

Олово

0,74

0,64

0,60

0,33

Палладий

0,69

0,67

0,74

Платина

0,68

0,69

0,72

0,76

0,84

Рений

0,71

Родий

1,54

1,52

1,47

Ртуть

0,33

0,09

0.1

0,115

Свинец

0,37

0,35

0,335

0,315

0,19

Серебро

4,22

4,18

4,17

3,62

Сурьма

0,23

0,18

0,17

0,17

0,21

Таллий

0,41

0,43

0,49

0,25 (400 0)

Тантал

0,54

0,54

Титан

0,16

0,15

Торий

0,41

0,39

0,40

0,45

Уран

0,24

0,26

0,31

0,40

Хром

0,86

0,85

0,80

0,63

Цинк

1,14

1,13

1,09

1,00

0,56

Цирконий

0,21

0,20

0,19

Блок: 3/7 | Кол-во символов: 3131
Источник: https://prompriem.ru/metally/teploprovodnost.html

От чего зависит показатель теплопроводности

Изучая способность передачи тепла металлическими изделиями выявлено, что теплопроводность зависит от:

  • вида металла;
  • химического состава;
  • пористости;
  • размеров.

Металлы имеют различное строение кристаллической решетки, а это может изменить теплопроводность материала. Так, например, у стали и алюминия, особенности строения микрочастиц влияют по-разному на скорость передачи тепловой энергии через них.

Коэффициент теплопроводности может иметь различные значения для одного и того же металла при изменении температуры воздействия. Это связано с тем, что у разных металлов градус плавления отличается, а значит, при других параметрах окружающей среды, свойства материалов также будут отличаться, а это отразится на теплопроводности.

Блок: 4/7 | Кол-во символов: 782
Источник: https://prompriem.ru/metally/teploprovodnost.html

Методы измерения

Для измерения теплопроводности металлов используют два метода: стационарный и нестационарный. Первый характеризуется достижением постоянной величины изменившейся температуры на контролируемой поверхности, а второй – при частичном изменении таковой.

Стационарное измерение проводится опытным путем, требует большого количества времени, а также применения исследуемого металла в виде заготовок правильной формы, с плоскими поверхностями. Образец располагают между нагретой и охлажденной поверхностью, а после прикосновения плоскостей, измеряют время, за которое заготовка может увеличить температуру прохладной опоры на один градус по Кельвину. Когда рассчитывают теплопроводность, обязательно учитывают размеры исследуемого образца.

Нестационарную методику исследований используют в редких случаях из-за того, что результат, зачастую, бывает необъективным. В наши дни никто, кроме ученых, не занимается измерением коэффициента, все используют, давно выведенные опытным путем, значения для различных материалов. Это обусловлено постоянством данного параметра при сохранении химического состава изделия.

Блок: 5/7 | Кол-во символов: 1126
Источник: https://prompriem.ru/metally/teploprovodnost.html

Теплопроводность стали, меди, алюминия, никеля и их сплавов

Обычное железо и цветные металлы имеют разное строение молекул и атомов. Это позволяет им отличаться друг от друга не только механическими, но и свойствами теплопроводности, что, в свою очередь, влияет на применение тех или иных металлов в различных отраслях хозяйства.

Таблица 2

таблица теплопроводности металлов

Сталь имеет коэффициент теплопроводности, при температуре окружающей среды 0 град. (С), равный 63, а при увеличении градуса до 600, он снижается до 21 Вт/м*град. Алюминий, в таких же условиях, наоборот – увеличит значение от 202 до 422 Вт/м*град. Сплавы из алюминия, будут также повышать теплопроводность, по мере увеличения температуры. Только величина коэффициента будет на порядок ниже, в зависимости от количества примесей, и колебаться в пределах от 100 до 180 единиц.

Медь, при изменении температуры в тех же пределах, будет уменьшать теплопроводность от 393 до 354 Вт/м*град. При этом, медь содержащие сплавы латуни будут иметь такие же свойства, как и алюминиевые, а значение теплопроводности будет изменяться от 100 до 200 единиц, в зависимости от количества цинка и других примесей в составе сплава латуни.

теплопроводность стали и меди

Коэффициент теплопроводности чистого никеля считается низким, он будет менять свое значение от 67 до 57 Вт/м*град. Сплавы с содержанием никеля, будут также иметь коэффициент с пониженным значением, который, благодаря содержанию железа и цинка, колеблется от 20 до 50 Вт/м*град. А наличие хрома, позволит понизить теплопроводность в металлах до 12 единиц, с небольшим увеличением этой величины, при нагреве.

Блок: 6/7 | Кол-во символов: 1576
Источник: https://prompriem.ru/metally/teploprovodnost.html

Применение

Агрегатное состояние материалов имеет отличительную структуру строения молекул и атомов. Именно это оказывает большое влияние на металлические изделия и их свойства, в зависимости от назначения.

Отличающийся химический состав узлов и деталей из железа, позволяет обладать различной теплопроводностью. Это связано со структурой таких металлов как чугун, сталь, медь и алюминий. Пористость чугунных изделий способствует медленному нагреванию, а плотность медной структуры – наоборот, ускоряет процесс теплоотдачи. Эти свойства используют для быстрого отвода тепла или постепенного нагревания продукции инертного назначения. Примером использования свойств металлических изделий является:

  • кухонная посуда с различными свойствами;
  • оборудование для пайки труб;
  • утюги;
  • подшипники качения и скольжения;
  • сантехническое оборудование для подогрева воды;
  • приборы отопления.

Медные трубки широко используют в радиаторах автомобильных систем охлаждения и кондиционеров, применяемых в быту. Чугунные батареи сохраняют тепло в квартире, даже при непостоянной подаче теплоносителя требуемой температуры. А радиаторы из алюминия, способствуют быстрой передаче тепла отапливаемому помещению.

радиатор отопления и алюминия

При возникновении высокой температуры, в результате трения металлических поверхностей, также важно учитывать теплопроводность изделия. В любом редукторе или другом механическом оборудовании, способность отводить тепло, позволит деталям механизма сохранить прочность и не быть подвергнутыми разрушению, в процессе эксплуатации. Знание свойств теплопередачи различных материалов, позволит грамотно применить те или иные сплавы из цветных или черных металлов.

:

Ещё

Блок: 7/7 | Кол-во символов: 1759
Источник: https://prompriem.ru/metally/teploprovodnost.html

Кол-во блоков: 11 | Общее кол-во символов: 14722
Количество использованных доноров: 3
Информация по каждому донору:
  1. http://met-all.org/cvetmet-splavy/med/teploprovodnost-medi-i-ee-splavov.html: использовано 1 блоков из 5, кол-во символов 2339 (16%)
  2. http://tutmet.ru/koefficient-teploprovodnosti-medi-aluminiya.html: использовано 2 блоков из 5, кол-во символов 2814 (19%)
  3. https://prompriem.ru/metally/teploprovodnost.html: использовано 6 блоков из 7, кол-во символов 9569 (65%)

Тепловые свойства меди

Характерной особенностью меди является ее высокая теплопроводность, в 6 раз большая, чем у железа, и более высокая, чем у железа, механическая стойкость при низких температурах.
Коэффициент теплопроводности меди при температуре 20–100 °С составляет 394 Вт/(м*К) – выше только у серебра. Стальной прокат уступает меди по этому показателю почти в 9 раз, а железо – в 6. Различные примеси по-разному влияют на физические свойства металлов. У меди скорость передачи тепла снижается при добавлении в материал или попадании в результате технологического процесса алюминия, железа, кислорода, мышьяка, сурьмы, серы, селеа, фосфора.
Высокая теплопроводность характеризуется быстрым распространением энергии нагрева по всему объему предмета. Эта способность обеспечила меди широкое применение в любых системах теплообмена, особенно труб, листовой меди и медной проволоки. Ее используют при изготовлении трубок и радиаторов холодильников, кондиционеров, вакуумных установок, автомашин для отвода избыточного тепла охлаждающей жидкости. В отопительных приборах подобные изделия из меди служат для обогрева. 
Способность меди проводить тепло снижается при нагреве. Значения коэффициента теплопроводности меди в воздухе зависит от температуры последнего, которая влияет на теплоотдачу (охлаждение). Чем выше температура окружающей среды, тем медленнее остывает металл и ниже его теплопроводность. Поэтому во всех теплообменниках используют принудительный обдув вентилятором – это повышает эффективность работы устройств и одновременно поддерживает тепловую проводимость на оптимальном уровне.
Тепловое расширение меди (при 20 – 100 град. C) – 0,0168 мм / м / ºC.
Чистая медь и ее сплавы не являются жаростойкими материалами, однако, в некоторых случаях они применяются при повышенных температурах, когда от конструкции требуется повышенная электропроводность или теплопроводность. Используется медь с низким содержанием кислорода (<<0,04 %). Когда требуется прочность изделия, то вводится мышьяк (0,4 %). Добавки Сё (1,0 %), Сг (0,3 %) и Ag (0,1 %) также улучшают механические свойства меди при повышенных температурах, причем электропроводность при этом остается практически без изменения.
У меди высокая теплопроводность, что обуславливает достаточно сложный процесс монтажных и других работ, имеющих свою специфику. Сварка, пайка, резка меди требует более концентрированного нагрева, чем для стали, и зачастую предварительного и сопутствующего подогрева металла.
Медь, помимо широкого применения в технике по причине ее высокой электропроводности, используется в химическом машиностроении в качестве конструкционного материала для изготовления разнообразной химической аппаратуры и, в особенности, теплообменной аппаратуры (выпарные аппараты, теплообменники, конденсаторы, испарители, змеевики). Объясняется это высокой теплопроводностью меди и ее сплавов, их благоприятными физико-механическими свойствами при достаточно высокой.
Существует несколько марок меди, теплопроводность которых при низких температурах может быть весьма различной в зависимости от количества и характера примесей.

Температура плавления меди 1083,85 C (1357.77 ± 0.20·K).

 Принятые значения термодинамических величин для меди и ее соединений в кристаллической и жидкой фазах.

Вещество

Состояние

H°(298.15K)-H°(0)

S°(298.15K)

Cp°(298.15K)

Коэффициенты в уравнении для Cp°(T)а

Интервал температур

Ttr или Tm

DtrHили DmH

   

кДж×моль‑1

Дж×K‑1×моль‑1

a

b×103

c×105

K

кДж×моль‑1

                     

Cu

к, куб.

5.004

33.15

24.44

22.287

12.923

0.587б

298.15-1357.77

1357.77

13.14

 

ж

32.8

1357.77-4500

CuO

к,монокл.

7.11

42.74

42.30

48.589

7.201

7.499

298.15-1500

1500

49

 

ж

67

1500-4000

Cu2O

к, куб.

12.6

92.55

62.60

64.553

17.578

6.395

298.15-1517

1517

65.6

 

ж

100

1517-4000

Cu(OH)2

к, ромб.

12.45

80.50

78,0

95.784

11.521

18.862

298.15-322

322

0.456

 

к, ромб.

95.784

11.521

18.862

322-1000

CuF

к, куб.

9.5

65

52.0

55.024

9.137

5.110

298.15-1300

 

к, куб.

66.6

1300-2000

CuF2

кII,монокл.

12.15

77.8

65.815

73.100

21.277

12.115

298.15-1065

1065

3

 

кI, куб.

90

1065-1109

1109

55

 

ж

100

1109-3000

CuCl

кII, куб.

11.4

87.74

52.55

38.206

38.315

-2.596

298.15-685

685

6.5

 

кI, гекс.

79

685-696

696

7.08

 

ж

29.319

14.818

-116.637

696-1200

 

ж

49.200

5.000

1200-3000

CuCl2

кII,монокл.

14.983

108.07

71.88

78.888

5.732

7.749

298.15-675

675

0.7

 

кI, куб.

82.4

675-871

871

15

 

ж

100

871-2000

CuBr

кIII, куб.

12.104

96.1

54.90

-324.417

2241.940

-38.227б

298.15-657

657

4.6

 

кII, гекс.

93.175

-27.924

657-741

741

2.15

 

кI, куб.

83

741-759

759

5.1

 

ж

38.365

7.807

-115.447

759-1200

 

ж

49.750

5.000

1200-2000

CuBr2

к,монокл.

15.5

135

75.0

81.117

4.547

6.643

298.15-2000

CuI

кIII, куб.

12.1

96.1

54.0

381.138

-1139.67

77.215б

298.15-643

643

3.1

 

кII, гекс.

-85.852

339.060

643-679

679

2.7

 

кI, куб.

116.854

-62.123

679-868

868

7.93

 

ж

55.205

-2.435

-105.925

868-1400

 

ж

50.20

5.0

1400-2000

CuI2

к

16

153

76

70.053

19.947

298.15-1000

CuS

к, гекс.

9.44

67.27

47.31

43.675

20.127

2.103

298.15-2000

Cu2S

кIII,монокл.

15.8

116.22

76.86

17.070

163.596

-9.791

298.15-376

376

3.79

 

кII, гекс.

-1831.18

7221.15

-537.89б

376-710

710

1.19

 

кI, куб.

53.634

20.768

-81.748

710-1400

1400

12.8

 

ж

90

1400-3000

CuSO4

к, ромб.

16.86

109.2

98.87

89.674

106.341

17.016б

298.15-1100

 

ж

159.4

1100-2000

 

aCp°(T)=bT – cT-2 + dT2 + eT3 (вДж×K‑1×моль‑1)

Cu:  бd=-13.927×10-6  e=7.476. 10-9

CuBr:  б d=-4815.530×10-6,  e=3620.190. 10-9

CuI:  б d=1119.510.10-6

Cu2S:  б d=-10044.20×10-6,  e=4895.09.10-9

CuSO4:  б d=-37.887.10-6

Теплопроводность металлов и сплавов таблица

Пояснения сравнительных величин приборов отопления

Из представленных выше данных, видно, что наиболее высоким показателем теплоотдачи обладает биметаллическое отопительное устройство. Конструктивно такой прибор представлен компанией RIFAR в ребристом алюминиевом корпусе. в котором располагаются металлические трубки, вся конструкция крепится сварным каркасом. Этот вид батарей ставится в домах с большой этажностью, а также в коттеджах и частных домах. К недостатку этого вида отопительного устройства относится его дороговизна.

Теплопроводность металловТеплопроводность металлов

Важно! Когда этот вид батарей ставится в домах с большим количеством этажей, рекомендуется иметь собственную котельную станцию, в которой есть узел водоподготовки. Это условие предварительной подготовки теплоносителя связано со свойствами алюминиевых батарей

они могут подвергаться электрохимической коррозии, когда он поступает в некачественном виде через центральную сеть отопления. По этой причине отопительные приборы из алюминия рекомендуется ставить в отдельных системах отопления.

Чугунные батареи в этой сравнительной системе параметров значительно проигрывают, у них низкая теплоотдача, большой вес отопительного прибора. Но, несмотря на эти показатели, радиаторы МС-140 пользуются спросом населения, причиной которого являются такие факторы:

Длительность безаварийной эксплуатации, что важно в отопительных системах.
Стойкость к негативному воздействию (коррозии) теплового носителя.
Тепловая инерционность чугуна.

Данный вид устройств отопления работает более 50 лет, для него нет разницы в качестве подготовки теплового носителя. Нельзя их ставить в домах, где, возможно, высокое рабочее давление сети отопления, чугун не относится к прочным материалам.

Сравнение по другим характеристикам

Об одной особенности работы батарей – инертности – уже было упомянуто выше. Но для того чтобы сравнение радиаторов отопления было корректным, его надо производить не только по теплоотдаче, но и по другим важным параметрам:

  • рабочему и максимальному давлению;
  • количеству вмещаемой воды;
  • массе.

Ограничение по величине рабочего давления определяет, можно ли устанавливать отопительный прибор в многоэтажных зданиях, где высота столба воды может достичь сотни метров. Кстати сказать, это ограничение не касается частных домов, где давление в сети не бывает высоким по определению. Сравнение по вместительности радиаторов может дать представление об общем количестве воды в системе, которое придется нагревать. Ну а масса изделия важна при определении места и способа его крепления.

В качестве примера ниже показана сравнительная таблица характеристик различных радиаторов отопления одинакового размера:

Теплопроводность металловТеплопроводность металлов

Примечание. В таблице за 1 единицу принят отопительный прибор из 5 секций, кроме стального, представляющего собой единую панель.

Теплопроводность и плотность алюминия

В таблице представлены теплофизические свойства алюминия Al в зависимости от температуры. Свойства алюминия даны в широком диапазоне температуры — от минус 223 до 1527°С (от 50 до 1800 К).

Как видно из таблицы, теплопроводность алюминия при комнатной температуре равна около 236 Вт/(м·град), что позволяет применять этот материал для изготовления радиаторов и различных теплоотводов.

Кроме алюминия, высокой теплопроводностью обладает также медь. У какого металла теплопроводность больше? Известно, что теплопроводность алюминия при средних и высоких температурах все-таки меньше, чем у меди, однако, при охлаждении до 50К, теплопроводность алюминия существенно возрастает и достигает значения 1350 Вт/(м·град). У меди же при такой низкой температуре значение теплопроводности становится ниже, чем у алюминия и составляет 1250 Вт/(м·град).

Алюминий начинает плавиться при температуре 933,61 К (около 660°С), при этом некоторые его свойства претерпевают значительные изменения. Значения таких свойств, как температуропроводность, плотность алюминия и его теплопроводность значительно уменьшаются.

Плотность алюминия в основном определяется его температурой и имеет зависимость от агрегатного состояния этого металла. Например, при температуре 27°С плотность алюминия равна 2697 кг/м 3 , а при нагревании этого металла до температуры плавления (660°С), его плотность становится равной 2368 кг/м 3 . Снижение плотности алюминия с ростом температуры обусловлено его расширением при нагревании.

отсюда

В таблице представлены значения теплопроводности металлов (цветных), а также химический состав металлов и технических сплавов в интервале температуры от 0 до 600°С.

Цветные металлы и сплавы: никель Ni, монель, нихром; сплавы никеля (по ГОСТ 492-58): мельхиор НМ81, НМ70, константан НММц 58,5-1,54, копель НМ 56,5, монель НМЖМц и К-монель, алюмель, хромель, манганин НММц 85-12, инвар; магниевые сплавы (по ГОСТ 2856-68), электрон, платинородий; мягкие припои (по ГОСТ 1499-70): олово чистое, свинец, ПОС-90, ПОС-40, ПОС-30, сплав Розе, сплав Вуда. Читать далее →

Какой же все таки поставить радиатор? Я думаю каждый из нас задавался таким же вопросом придя на рынок или в магазин запчастей, осматривая огромный выбор радиаторов на любой вкус, удовлетворяющий даже самого извращенного привереды. Хочешь двух рядный, трех рядный, побольше, поменьше, с крупной секцией с мелкой, алюминиевый, медный. Вот именно из какого металла изготовлен радиатор и пойдет речь.

Одни считают, что медь. Это своеобразные староверы, так бы назвали их в XVII веке. Да, если взять не новые автомобили XX века, то тогда повсеместно устанавливались медные радиаторы. Не зависимо от марки и модели, была ли это бюджетная микролитражка или тяжеловесный многотонный грузовик. Но есть и другая армия автовладельцев утверждая что радиаторы изготовленные из алюминия лучше медных. Потому как их устанавливают на новые современные автомобили, на сверхмощные двигатели требующие качественного охлаждения.

И что самое интересное они все правы. И у тех и у других есть свои плюсы и естественно минусы. А теперь небольшой урок физики. Самым отличным показателем, на мой взгляд, являются цифры, а именно коэффициент теплопроводности. Если сказать по простому то это способность вещества передавать тепловую энергию от одного вещества другому. Т.е. у нас имеется ОЖ, радиатор из N-ного металла и окружающая среда. Теоретически чем выше коэффициент тем быстрее радиатор будет забирать тепловую энергию у ОЖ и быстрее отдавать в окружающую среду.

Итак, теплопроводность меди составляет 401 Вт/(м*К), а алюминия — от 202 до 236 Вт/(м*К). Но это в идеальных условиях. Казалось бы медь выиграла в данном споре, да это «+1» за медные радиаторы. Теперь кроме всего необходимо рассмотреть собственно конструкцию самих радиаторов.

Теплопроводность металловТеплопроводность металлов

Медные трубки в основе радиатора, так же медные ленты воздушного радиатора для передачи полученного тепла в окружающую среду. Крупные ячейки сот радиатора позволяют снизить потери скорости воздушного потока и позволяют прокачать большой объем воздуха за единицу времени. Слишком малая концентрация ленточной части радиатора снижает эффективность теплопередачи и увеличивает концентрацию и силу локального нагрева радиатора.

Теплопроводность металловТеплопроводность металлов

Я нашел два вида радиаторов в основе которых лежат алюминиевые и стальные трубки. Вот еще не маловажная часть, т.к. коэффициент теплопроводности стали очень мал по сравнению с алюминием, всего лишь 47 Вт/(м*К). И собственно только из-за высокой разности показателей, уже не стоит устанавливать алюминиевые радиаторы со стальными трубками. Хотя они прочнее чистокровных алюмишек и снижают риски протечки от высокого давления, например при заклинившем клапане в крышке расширительного бачка. Высокая концентрация алюминиевых пластин на трубках увеличивает площадь радиатора обдуваемого воздухом тем самым увеличивая его эффективность, но при этом увеличивается сопротивление воздушного потока и снижается объем прокачиваемого воздуха.

Ценовая политика же на рынке сложилась таким образом что медные радиаторы значительно дороже алюминиевых. Из общей картины можно сделать вывод что и те и другие радиаторы по своему хороши. Какой же все таки выбрать? Этот вопрос остается за вами.

Как правильно сделать расчет тепловой мощности

Грамотное обустройство системы отопления в доме не может обойтись без теплового расчета мощности отопительных устройств необходимых для обогрева помещений. Существуют простые проверенные способы расчета тепловой отдачи отопительного прибора. необходимой для обогрева комнаты. Здесь также учитывается расположение помещения в доме по сторонам света.

Теплопроводность металловТеплопроводность металлов

  • Южная сторона дома обогревается на метр кубический помещения 35 Вт. тепловой мощности.
  • Северные комнаты дома на метр кубический обогреваются 40 Вт. тепловой мощности.

Для получения общей тепловой мощности необходимой для обогрева помещений дома надо реальный объем комнаты умножить на представленные величины и сложить их по количеству комнат.

Важно! Представленный вид расчета не может быть точным, это укрупненные величины, ими пользуются для общего представления необходимого количества отопительных приборов. Расчет биметаллических устройств отопления, а также алюминиевых батарей проводится исходя из параметров указанных в паспортных данных изделия

По нормативам секция такой батареи равняется 70 единицам мощности (DT)

Расчет биметаллических устройств отопления, а также алюминиевых батарей проводится исходя из параметров указанных в паспортных данных изделия. По нормативам секция такой батареи равняется 70 единицам мощности (DT).

Что это такое, как понимать? Паспортный тепловой поток секции батареи может быть получен при соблюдении условия подачи теплового носителя с температурой 105 градусов. Для получения в обратной системе отопления дома температуры 70 градусов. Начальная температура в комнате принимается за 18 градусов тепла.

Теплопроводность металловТеплопроводность металлов
теплоноситель нагрет до 105 градусов

DT= (температура носителя подачи + температура носителя обратки)/2, минус комнатная температура. Затем данные в паспорте изделия умножить на коэффициент поправочный, которые для разных значений DT приводятся в специальных справочниках. На практике это выглядит так:

  • Система отопительная работает в прямой подаче 90 градусов в обработке 70 градусов, комнатная температура 20 градусов.
  • По формуле получается (90+70)/2-20=60, DT= 60

По справочнику ищем коэффициент для этой величины, он равен 0,82. В нашем случае тепловой поток 204 умножаем на коэффициент 0,82, получаем реальный поток мощности = 167 Вт.

Сравнение по тепловой мощности

Если вы внимательно изучили предыдущий раздел, то должны понимать, что на теплоотдачу очень влияют температуры воздуха и теплоносителя, а эти характеристики мало зависят от самого радиатора. Но есть и третий фактор — площадь поверхности теплообмена, а тут конструкция и форма изделия играет большую роль. Поэтому идеально сравнить стальной панельный обогреватель с чугунным затруднительно, их поверхности слишком разные.

Теплопроводность металловТеплопроводность металлов

Четвертый фактор, влияющий на теплоотдачу, — это материал, из коего изготовлен отопительный прибор. Сравните сами: 5 секций алюминиевого радиатора GLOBAL VOX высотой 600 мм отдаст 635 Вт при DT = 50 °С. Чугунная ретро батарея DIANA (GURATEC) такой же высоты и таким же числом секций сможет выдать только 530 Вт при тех же условиях (Δt = 50 °С). Эти данные опубликованы на официальных сайтах производителей.

Примечание. Характеристики алюминиевых и биметаллических продуктов с точки зрения тепловой мощности практически идентичны, сравнивать их нет смысла.

Можно попытаться провести сравнение алюминия со стальным панельным радиатором, взяв ближайший типоразмер, подходящий по габаритам. Упомянутые 5 алюминиевых секций GLOBAL высотой 600 мм имеют общую длину около 400 мм, что соответствует стальной панели KERMI 600х400. Выходит, что даже трехрядный стальной прибор (тип 30) выдаст лишь 572 Вт при Δt = 50 °С. Но надо учитывать, что глубина радиатора GLOBAL VOX составляет всего 95 мм, а панели KERMI – почти 160 мм. То есть, высокая теплоотдача алюминия дает о себе знать, что отражается на габаритах.

В условиях индивидуальной системы отопления частного дома батареи одинаковой мощности, но из различных металлов, работать будут по-разному. Поэтому и сравнение довольно предсказуемо:

  1. Биметаллические и алюминиевые изделия быстро прогреваются и остывают. Отдавая больше теплоты за промежуток времени, они возвращают более холодную воду в систему.
  2. Стальные панельные радиаторы занимают среднюю позицию, так как передают тепло не настолько интенсивно. Зато они дешевле и проще в монтаже.
  3. Самые инертные и дорогие – это обогреватели из чугуна, им присущ долгий разогрев и остывание, из-за чего появляется небольшое запаздывание при автоматическом регулировании расхода теплоносителя термостатическими головками.

Из всего вышесказанного напрашивается простой вывод

Не суть важно, из какого материала изготовлен радиатор, главное, чтобы он был верно подобран по мощности и подходил пользователю во всех отношениях. А вообще, для сравнения не помешает ознакомиться со всеми нюансами работы того или иного прибора, а также где какой можно устанавливать

Расчет тепловой мощности

Для организации обогрева помещений необходимо знать требуемую мощность на каждое из них, после чего произвести расчет теплоотдачи радиатора. Расход тепла на обогрев комнаты определяется достаточно простым способом. В зависимости от расположения принимается величина теплоты на обогрев 1 м3 комнаты, она составляет 35 Вт/ м3 для южной стороны здания и 40 Вт/ м3 – для северной. Реальный объем помещения умножается на эту величину и получаем требуемую мощность.

Внимание! Приведенный метод подсчета необходимой мощности является укрупненным, его результаты учитываются только в качестве ориентира. Для того чтобы рассчитать алюминиевые или биметаллические батареи, надо отталкиваться от характеристик, указанных в документации производителя

В соответствии с нормативами там дается мощность 1 секции радиатора при DT = 70. Это означает, что 1 секция даст указанный тепловой поток при температуре теплоносителя на подаче 105 ºС, а в обратке – 70 ºС. При этом расчетная температура внутренней среды принимается 18 ºС

Для того чтобы рассчитать алюминиевые или биметаллические батареи, надо отталкиваться от характеристик, указанных в документации производителя. В соответствии с нормативами там дается мощность 1 секции радиатора при DT = 70. Это означает, что 1 секция даст указанный тепловой поток при температуре теплоносителя на подаче 105 ºС, а в обратке – 70 ºС. При этом расчетная температура внутренней среды принимается 18 ºС.

Исходя из нашей таблицы, теплоотдача одной секции биметаллического радиатора с межосевым размером 500 мм составляет 204 Вт, но только при температуре в подающем трубопроводе 105 ºС. В современных системах, особенно индивидуальных, настолько высокой температуры не бывает, соответственно, и отдаваемая мощность уменьшится. Чтобы узнать реальный тепловой поток, нужно вначале просчитать параметр DT для существующих условий по формуле:

DT = (tпод + tобр) / 2 – tкомн, где:

  • tпод – температура воды в подающем трубопроводе;
  • tобр – то же, в обратке;
  • tкомн – температура внутри комнаты.

После этого паспортная теплоотдача радиатора отопления умножается на поправочный коэффициент, принимаемый в зависимости от значения DT по таблице:

Теплопроводность металловТеплопроводность металлов

Например, при графике теплоносителя 80 / 60 ºС и комнатной температуре 21 ºС параметр DT будет равен (80 + 60) / 2 – 21 = 49, а поправочный коэффициент – 0.63. Тогда тепловой поток 1 секции того же биметаллического радиатора составит 204 х 0.63 = 128.5 Вт. Исходя из этого результата и подбирается количество секций.

https://youtube.com/watch?v=nSewFwPhHhM

Примеси в медных сплавах

отсюда

Примеси, содержащиеся в меди (и, естественно, взаимодействующие с ней), подразделяют на три группы.

Образующие с медью твердые растворы

К таким примесям относятся алюминий, сурьма, никель, железо, олово, цинк и др. Данные добавки существенно снижают электро- и теплопроводность. К маркам, которые преимущественно используются для производства токопроводящих элементов, относятся М0 и М1. Если в составе медного сплава содержится сурьма, то значительно затрудняется его горячая обработка давлением.

Не растворяющиеся в меди примеси

Сюда относятся свинец, висмут и др. Не влияющие на электропроводность основного металла, такие примеси затрудняют возможность его обработки давлением.

Примеси, образующие с медью хрупкие химические соединения

К этой группе относятся сера и кислород, который снижает электропроводность и прочность основного металла. Наличие серы в медном сплаве значительно облегчает его обрабатываемость при помощи резания.

Тепловые и термодинамические свойства меди

Рассмотрим тепловые и термодинамические свойства меди.

Температура плавления 1083°С, температура кипения 2573°С, характеристическая температура ΘD 345 К, удельная теплота плавления 239 кДж/кг, удельная теплота испарения 4790 кДж/кг. Удельная теплоемкость меди при 293 К при постоянном давлении Ср= 384,2 Дж/(кг*K), а жидкой (при температуре плавления) 495 Дж/(кг*К). Удельная электронная теплоемкость Срэл = [0,688 мДж/(моль*К2)] *Т. Теплопроводность λ при 293 К равна 397 Вт/(м*К), при температуре 1356 К 165,8 Вт/(м*К).

Зависимость теплопроводности λ, от температуры (чистота 99,999 %):

Т, К

λ, Вт/(м*К)

Т, К

λ, Вт/(м*К)

Т, К

λ, Вт/(м*К)

2

5

20

50

523,5

1487,0

2518,0

1189,5

100

150

200

250

481,3

428,4

413

406,0

300

350

400

401,2

397,2

393,7

Теплопроводность меди заметно не изменяется под влиянием висмута, свинца, серы, селена, сильно понижается под влиянием незначительных количеств мышьяка, алюминия, снижается под влиянием сурьмы. Температурный коэффициент линейного расширения при 293 К α = 16,7*10-6К-1.

Изменение α в зависимости от температуры (чистота 99,999%):

Т, К

  α*106 К-1

Т, К

 α*106 К-1

Т, К

  α*106 К-1

5

0,0024

20

0,23

400

17,58

7

0,01062

40

2,28.

600

18,92

10

0,0294

60

5,40

800

20,09

13

0,06322

100

10,33

1000

22,1

15

0,9634

200

15,18

1200

24,5

 

 

 

 

1300

27,0

Температурный коэффициент объемного расширения при 293 К β = 49,2*10-6 К-1, в диапазоне 293-1356 К: β= (45,0+0,016 Т)*10-6К-1, где β Д коэффициент объемного расширения, К-1; Т Д температура, К.

Молярная энтропия s° в зависимости от температуры:

Т, К

298

500

1000

1500

2000

2500

3000

s°, Дж/(моль*К)

33,39

44,8

65,28

87,19

96,20

103,24

215,53

Поверхностное натяжение при 1083 °С σ =1351 мН/м. Поверхностная энергия v =1115 мДж/м2, для грани (100) v =1060, а для (111) v = 926 мДж/м3. Энергия дефекта упаковки 67 МДж/м2. Давление пара р в зависимости от температуры:

Т, К

Р, Па

Т, К

Р, Па

700

800

900

31,066*10-15

38,514*10-12

97,804*10-10

1000

1100

82,22*10-8

30,968*10-6

Давление пара при температуре плавления Р =50,47 мПа. Энергия активации самодиффузии в интервале 1135Д1330 К Е= 205 КДж/моль.

Параметры взаимной диффузии (предэкспоненциальный множитель Do и энергия активации Е) некоторых элементов в меди:

Диффундирующий элемент

  T, К

 Образующаяся фаза

  D0, м2

  Е, кДж/моль

Н

Твердый раствор

5,6*10-8

38,52

Be

Твердый раствор

2,32*10-8

117,23

Si

Твердый раствор

3,7*10-6

167,47

S

1403Д1673

Жидкая фаза

3,44*10-7

28,85

S

1073Д1273

Твердый раствор

8,24*10-5

196,78

Мп

973Д1348

Твердый раствор

5*10-5

192,59

Fe

973Д1343

Твердый раствор

1,4*10-4

216,88

Co

973Д1348

Твердый раствор

1,93*10-4

226,51

Ni

973Д1348

Твердый раствор

2,7*10-4

236,55

Zn

878Д1323

Твердый раствор

3,4*10-5

190,92

Ge

952Д1288

Твердый раствор

3,97*10-5

187,5

As

1083Д1328

Твердый раствор

2*10-5

176,6

Rh

1023Д1328

Твердый раствор

3,3*10-4

242,5

Pd

1080Д1328

Твердый раствор

1,71*10-4

227

Ag

973Д1173

Твердый раствор

1,3*10-6

161,6

Cd

998Д1223

Твердый раствор

9,35*10-5

191,34

In

1023Д1343

Твердый раствор

1,3*10-4

193

Sn

973Д1189

Твердый раствор

1,0*10-4

190,5

Sb

873Д1273

Твердый раствор

3,4*10-5

175,85

Au

Твердый раствор

1*10-5

187,99

Tl

1058Д1269

Твердый раствор

7,1*10-5

181,29

Медь теплопроводность – Справочник химика 21

    Медь, серебро и золото несколько выпадают из общей для переходных металлов закономерности по своему электронному строению с валентной конфигурацией Они характеризуются более низкими температурами плавления и кипения, чем предшествующие им переходные элементы, и являются довольно мягкими металлами. Проявление таких свойств соответствует закономерной тенденции к ослаблению металлических связей, обнаруживаемой начиная с группы У1Б(Сг-Мо- У). Эта тенденция объясняется постепенным уменьшением числа неспаренных -электронов у атомов металлов второй половины переходных рядов. Медь, серебро и золото обладают очень большой электро- и теплопроводностью, поскольку их электронное строение обусловливает высокую подвижность 5-электронов. Эти металлы ковки, пластичны и инертны и могут находиться в природе в металлическом состоянии. Они встречаются довольно редко и поэтому имеют высокую стоимость, но все же распространены значительно больше, чем платиновые металлы. Относительно большая распространенность и возможность существования этих металлов в природе в несвязанном виде послужили причиной того, что они явились первыми металлами, с которыми познакомился чёловск и кошрые иН научился обрабатывать. По-видимому, первым металлом, который стали восстанавливать из его руды, была медь. Металлургия началась с открытия того, что сплав меди с оловом (естественно встречающаяся примесь) дает намного более твердый материал – бронзу. Медные предметы были найдены [c.446]
    Общие свойства меди и ее сплавов. Медь, помимо широкого применения в технике по причине ее высокой электропроводности, используется в химическом машиностроении в качестве конструкционного материала для изготовления разнообразной химической аппаратуры и в особенности теплообменной аппаратуры (выпарные аппараты,теплообменники,конденсаторы, испарители, змеевики и т. п.). Объясняется это высокой теплопроводностью меди и ее сплавов, их благоприятными физико-механическими свойствами при достаточно высокой [c.245]

    Е. Конструкционные материалы. Основными конструкционными материалами являются алюминий, углеродистая и нержавеющая стали. Выбор материала определяется расчетными предельными значениями давления и температуры, а также коррозионной стойкостью. В отсутствие коррозионных жидкостей высокая теплопроводность алюминия обеспечивает самую низкую стоимость теплообменника. Алюминий целесообразно применять в диапазоне температур от криогенных до 250 °С, углеродистую сталь — от 250 до 480 “С, нержавеющую сталь — в диапазоне 250—650 С. Для работы при высоких температурах в условиях коррозии предпочтительно использовать нержавеющие стали. Медь удобна для паяных конструкций и обеспечивает идеальные тепловые свойства. Тем не менее ее применяют только в коррозионной среде, где неприменим алюминий. В большинстве автомобильных радиаторов применяются медь или медные сплавы. [c.307]

    Из металлов лучше всего проводят тепло серебро и медь. Теплопроводность алюминия примерно в 2,5 раза, железа в 6 раз, свинца в 12 раз меньше, чем меди. [c.59]

    Влияние теплопроводности шариков и цилиндров на коэффициент теплопередачи от потока к стенке исследовалось в этой же работе. Зерна были сделаны из железного литья, цинка, алюминия и меди. Результаты приведены на рис. 1-45 и представляют собой зависимость поправочного коэффициента (а) (а) от величины коэффициента теплопроводности данного металла >.ч, ккал, м-ч – град). На этот коэффициент следует умножить коэффициент теплопередачи, полученный из графика (рис. 1-44). [c.58]


    Для более интенсивного отвода тепла от выхлопных клапанов в мощных двигателях применяют более сложную систему охлаждения. Для этого стержень и тарелку клапана делают полыми полость заполняют калиевой солью (ККО. ), натриевой солью (КаКО ), металлическим натрием (Ка) и через полость клапана пропускают охлаждающую воду. Иногда в полую часть стержня (шпинделя) запрессовывают стержень из красной меди, теплопроводность которой в 7 — [c.327]

    Более низкая, чем у меди, теплопроводность титановых труб компенсируется за счет меньшей толщины стенки и отсутствия образования накипи на стенках труб. Опытные испытания в США показали, что титановые трубы более эффективны при эксплуатации в опреснительных установках для морской воды, чем трубы пз рекомендованных для этой цели медных сплавов. Исследования, проведенные институтом титана (г. Запорожье), показывают, что экономическая [c.40]

    Медь пластична (легко изменяет форму под внешним механическим воздействием), очень хорошо проводит электрический ток, обладает высокой теплопроводностью, относительно устойчива к химическим воздействиям, устойчива к коррозии, ее поверхность имеет приятный оттенок и блеск. [c.148]

    Металлы имеют высокую теплопроводность и называются поэтому хорошими проводниками тепла. Из них лучшие проводники — серебро и медь. Т

Теплопроводность меди. Замечательное свойство

Какой же все таки поставить радиатор? Я думаю каждый из нас задавался таким же вопросом придя на рынок или в магазин запчастей, осматривая огромный выбор радиаторов на любой вкус, удовлетворяющий даже самого извращенного привереды. Хочешь двух рядный, трех рядный, побольше, поменьше, с крупной секцией с мелкой, алюминиевый, медный. Вот именно из какого металла изготовлен радиатор и пойдет речь.

Одни считают, что медь. Это своеобразные староверы, так бы назвали их в XVII веке. Да, если взять не новые автомобили XX века, то тогда повсеместно устанавливались медные радиаторы. Не зависимо от марки и модели, была ли это бюджетная микролитражка или тяжеловесный многотонный грузовик. Но есть и другая армия автовладельцев утверждая что радиаторы изготовленные из алюминия лучше медных. Потому как их устанавливают на новые современные автомобили, на сверхмощные двигатели требующие качественного охлаждения.

И что самое интересное они все правы. И у тех и у других есть свои плюсы и естественно минусы. А теперь небольшой урок физики. Самым отличным показателем, на мой взгляд, являются цифры, а именно коэффициент теплопроводности. Если сказать по простому то это способность вещества передавать тепловую энергию от одного вещества другому. Т.е. у нас имеется ОЖ, радиатор из N-ного металла и окружающая среда. Теоретически чем выше коэффициент тем быстрее радиатор будет забирать тепловую энергию у ОЖ и быстрее отдавать в окружающую среду.

Итак, теплопроводность меди составляет 401 Вт/(м*К), а алюминия – от 202 до 236 Вт/(м*К). Но это в идеальных условиях. Казалось бы медь выиграла в данном споре, да это “+1” за медные радиаторы. Теперь кроме всего необходимо рассмотреть собственно конструкцию самих радиаторов.

Я нашел два вида радиаторов в основе которых лежат алюминиевые и стальные трубки. Вот еще не маловажная часть, т.к. коэффициент теплопроводности стали очень мал по сравнению с алюминием, всего лишь 47 Вт/(м*К). И собственно только из-за высокой разности показателей, уже не стоит устанавливать алюминиевые радиаторы со стальными трубками. Хотя они прочнее чистокровных алюмишек и снижают риски протечки от высокого давления, например при заклинившем клапане в крышке расширительного бачка. Высокая концентрация алюминиевых пластин на трубках увеличивает площадь радиатора обдуваемого воздухом тем самым увеличивая его эффективность, но при этом увеличивается сопротивление воздушного потока и снижается объем прокачиваемого воздуха.

Ценовая политика же на рынке сложилась таким образом что медные радиаторы значительно дороже алюминиевых. Из общей картины можно сделать вывод что и те и другие радиаторы по своему хороши. Какой же все таки выбрать? Этот вопрос остается за вами.

В истории человеческой цивилизации роль меди преувеличить невозможно. Именно с нее человек начинал осваивать металлургию, учился создавать инструменты, посуду, украшения, деньги. И все благодаря уникальным свойствам этого металла, проявляющимся при сплаве с другими веществами. То мягкий, то прочный, то тугоплавкий, то плавится без всяких усилий. Обладает множеством прекрасных характеристик, и одной из них является теплопроводность меди.

Если речь зашла об этой характеристике, то надо пояснить, о чем идет речь. Теплопроводностью называют способность вещества передавать тепло от нагретого участка к холодному. Так вот, теплопроводность меди одна из самых высоких среди металлов. Как можно оценить такое свойство, как хорошее или как плохое?

Если спросить кулинаров и поваров, они скажут, как хорошее, благодаря чему наилучшим образом передает тепло от огня к готовящемуся продукту, да и нагрев равномерно распределяется по поверхности, контактирующей с пламенем.

Конечно, и другие металлы, и не только металлы, передают тепло, или, по-другому, обладают достаточной теплопроводностью, но у меди эта способность одна из лучших, так называемый коэффициент теплопроводности меди самый высокий, выше только у серебра.

Отмеченная способность обеспечивает широкие возможности использования металла в самых разных областях. В любых системах теплообмена медь является первым кандидатом на применение. Например, в электроотопительных приборах или в радиаторе автомобиля, где нагретая охлаждающая жидкость отдает лишнее тепло.

Теперь можно попытаться понять, чем обусловлен эффект передачи тепла. Происходящее объясняется достаточно просто. Происходит равномерное распределение энергии по объему материала. Можно провести аналогию с летучим газом. Попав в какой-то замкнутый сосуд, такой газ занимает все доступное ему место. Так и здесь, если металл нагреть в какой-то отдельной области, то полученная энергия равномерно распределяется по всему материалу.

Таким явлением можно объяснить теплопроводность меди. Не вдаваясь в можно сказать, что за счет внешнего поступлен

Теплопроводность – Простая английская Википедия, бесплатная энциклопедия

Теплопроводность – это способность материала проводить тепло. Металлы обладают хорошей теплопроводностью, как и газы. Теплопроводность материала является определяющим свойством, которое помогает в разработке эффективных технологий нагрева / охлаждения. Значение теплопроводности можно определить путем измерения скорости, с которой тепло может проходить через материал.

Термическое сопротивление противоположно теплопроводности.Это означает, что тепло не проводит много. Материалы с высоким удельным сопротивлением называются «термоизоляторами» и используются в одежде, термосах, домашних изоляционных материалах и автомобилях, чтобы согревать людей, или в холодильниках, морозильниках и термосах для охлаждения вещей.

Теплопроводность часто обозначается греческой буквой «каппа», κ {\ displaystyle \ kappa} , Единицы теплопроводности – ватт на метр-кельвин. Ватты – это мера мощности, метры – мера длины, а кельвины – мера температуры.По единицам измерения мы видим, что теплопроводность – это мера того, сколько энергии проходит через расстояние из-за разницы температур.

Некоторые отличные теплоизоляторы: Вакуум, Аэрогель, Полиуретан

Вот некоторые отличные теплопроводники: Серебро, медь, бриллиант

Серебро – один из наиболее теплопроводных материалов (и довольно распространен), и поэтому с серебром можно провести несколько интересных экспериментов, которые очень хорошо показывают, как работает теплопроводность.

Один пример: вы кладете 2 ложки в кипящую воду, одна из которых стальная, а другая серебряная. Когда вы достаете ложки из кипящей воды, серебряная ложка горячее, чем стальная. Причина этого в том, что серебро проводит тепло лучше, чем сталь. Серебряная ложка также будет остывать быстрее из-за этого, так как лучше отводит тепло.

Другой пример теплопроводности серебра – это нанесение различных материалов на кубики льда. Шайба просто сядет на лед и постепенно станет холоднее.Медный пенни растает через кубик льда и быстрее остывает. Серебряная монета, ложка или кольцо на кубике льда погрузится в него, как если бы кубик льда был сделан из густого сиропа, а серебро почти мгновенно станет ледяным. Опять же, это связано с тем, что серебро действительно хорошо поглощает тепло из воздуха и передает его кубику льда. Медь тоже хороша в этом, но не так хорошо, как серебро.

,

Тепловая и электрическая проводимость ненасыщенной полиэфирной смолы, наполненной композиционным материалом с медным наполнителем

Тепловая и электрическая проводимость ненасыщенной полиэфирной смолы с медным наполнителем из композитного материала исследована теоретически и экспериментально. В экспериментах полиэфирная матрица комбинируется с медью в форме дендрита для определения влияния размера и содержания наполнителя на теплопроводность и электропроводность соответственно. Обнаружено, что увеличение концентрации вызывает рост теплопроводности и электропроводности композиционной смеси.Также было замечено, что и тепловая, и электрическая проводимость увеличиваются с увеличением размера частиц наполнителя.

1. Введение

В настоящее время во многих областях применения термические и электропроводящие композиты на основе полимеров могут заменять металлы. Эта технология широко используется, поскольку она представляет новый материал, который включает тепловые, изоляционные и электрические свойства полимерных материалов. Преимуществами полимеров перед металлами являются низкая плотность, устойчивость к коррозии и окислению, легкость, защита от электромагнитных помех (EMI), более высокая химическая стойкость и более высокая технологичность.Эти превосходные функции могут быть легко адаптированы к различным и широко применяемым приложениям [1, 2].

В литературе слишком много исследований, посвященных добавлению неполимерных наполнителей для улучшения физических свойств полимера. Добавление наполнителей с высокими тепловыми и электрическими свойствами увеличивает тепловую и электрическую проводимость по сравнению с чистой смолой композита, но не может достичь уровня чистого наполнителя. Основная цель этого исследования – теоретическое и экспериментальное исследование влияния размера частиц и концентрации медных частиц дендритной формы, используемых в качестве наполнителей, на тепловую и электрическую проводимость.Некоторые из существующих исследований, изученных по этому предмету, резюмируются следующим образом.

В аналогичном исследовании Choi et al. [1] исследовали теплопроводность полиакрилатной матрицы алюминия и композитов, заполненных многослойными углеродными нанотрубками. При фиксированной концентрации наполнителя композит, загруженный алюминиевой пылью 13 мкм, мкм, имел более высокую теплопроводность, чем порошок 3 мкм мкм, а композит, заполненный двумя порошковыми смесями, показал синергетический эффект на теплопроводность.Теплопроводность композитов сильно зависит от размера и содержания наполнителей. Moreira et al. [3] использовали ненасыщенную полиэфирную смолу (UPR) в качестве связующего, а оксид алюминия и тенорит (оксид меди) в качестве проводящих частиц наноразмеров. Результаты показали, что теплопроводность увеличивается с концентрацией частиц, как и ожидалось.

Агравал и Сатапати [4] предложили новый теоретический метод для расчета одномерной теплопроводности и теплопроводности типичных полимерных композитных систем с наполнителем из твердых частиц.В их экспериментальной работе эпоксидное связующее применялось с наполнителем из нитрита алюминия. Теплопроводность композита увеличивается с добавлением частиц наполнителя, и скорость увеличения теплопроводности является быстрой для большой объемной доли, то есть выше 35% по сравнению с низкой объемной долей. В другом исследовании, в котором одновременно изучались как теплопроводность, так и электрическая проводимость, Zhou et al. [5] сообщили, что теплопроводность и электрическая проводимость зависят от формы и размера частиц, а также от добавленной концентрации частиц.При более высоких нагрузках наполнителя теплопроводность резко увеличивается. Теплопроводящие частицы алюминия, заключенные в полимерную матрицу, не могли контактировать друг с другом при низкой загрузке наполнителя, что приводило к низкой теплопроводности. Этот результат обусловлен высоким сопротивлением термического контакта на границе раздела между порошком наполнителя и полимерной матрицей. Тепловая и электропроводность ПВДФ с слоистым композитом из смеси алюминия выше, чем у наполнителя сферической формы. Было установлено, что теплопроводность композита в четыре раза выше, чем у чистой матрицы матричного композита никель-ПЭВП [6].

Измерение некоторых параметров материалов, таких как температуропроводность, теплопроводность и коэффициент теплового расширения, очень важно для приложений, используемых, особенно в производстве устройств. Температуропроводность, приведенная в разделе 3.1 (m 2 s −1 ), является важным теплофизическим параметром, который измеряет, насколько эффективно фононы переносят тепло от образца. Однако измерение теплообмена или теплового импеданса для теплообмена данного материала по существу определяется термической эффузией (Ws 1/2 м -2 K -1 ). e – еще один важный теплофизический параметр для операций закалки, а также для процессов нагрева или охлаждения поверхностей. Эти величины определяются как и, где – теплопроводность, – удельная теплоемкость, – объемная плотность. Известные значения теплопроводности и могут быть получены из [7]. Изменение этих параметров в зависимости от содержания наполнителя будет более подробно описано в разделе 3.1.

Учитывая теоретические основы теплопроводности, появляются некоторые прогнозные модели теплопроводности.Теоретическая модель Максвелла является основным элементом большинства этих моделей. Эта модель использует теорию потенциала для получения точного решения для проводимости системы со сферическими невзаимодействующими частицами в состоянии непрерывной матрицы [3–5, 8–10]. Где, и – теплопроводности композитной матрицы, и наполнитель соответственно, и – объемная доля наполнителя. Модель Хашина-Штрикмана описывается как один из лучших способов оценить нижний предел, когда нет информации о распределении частиц в матрице [6].Этот нижний предел может быть выражен следующим уравнением:

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *